Answer:
4
Step-by-step explanation:
For each number, you have to keep adding a positive 4 to get the next number in he sequence.
Answer:
I need more info!
Step-by-step explanation:
For a 7 sides polygon which is called heptagon or septagon
Interior angles = (7-2)*180/7 = 128.57°
Exterior angle = 180 - 128.57 = 51.43°
Central angle = 360/7 = 51.43°
The statements which are correct:
<span>3. The regular polygon ABCDEFG can be broken down into 2 isosceles trapezoids and 1 isosceles triangle
</span>
<span>5. The central angle of the polygon ABCDEFG is about 51.43° and each interior angle is about 128.57°
</span>
<span>7. The central angle ABCDEFG is the same measure of the exterior angle
</span>
<em>Here</em> as the <em>Pentagon</em> is <em>regular</em> so it's <em>all sides</em> will be of <em>equal length</em> . And if we assume It's each side be<em> </em><em><u>s</u></em> , then it's perimeter is going to be <em>(s+s+s+s+s) = </em><em><u>5s</u></em>.And as here , each <em>side</em> is increased by <em>8 inches</em> and then it's perimeter is <em>65 inches</em> , so we got that it's side after increament is<em> (s+8) inches</em> and original length is <em>s inches </em>. And if it's each side is <em>(s+8) inches</em> , so it's perimeter will be <em>5(s+8)</em> and as it's equal to <em>65 inches</em> . So , <em><u>5(s+8) = 65</u></em>


As we assumed the original side to be <em><u>s</u></em> .
<em>Hence, the original side's length 5 inches </em>
If a = first term and r = common ratio we have
a + ar + ar^2 = 13 and ar^2 / a = r^2 = 9
so r = 3
and a + 3a + 9a = 13
so a = 1
so they are 1,3 and 9
2.
in geometric series we have
4 , 4r ,4r^2 , 60
Arithmetic;
4, 4r , 4r + d , 4r + 2d
so we have the system of equations
4r + 2d = 60
4r^2 = 4r + d
From first equation
2r + d = 30
so d = 30 - 2r
Substitute for d in second equation:-
4r^2 - 4r - (30-2r) = 0
4r^2 - 2r - 30 =0
2r^2 - r - 15 = 0
(r - 3)(2r + 5) = 0
r = 3 or -2.5
r must be positive so its = 3
and d = 30 - 2(3) = 24
and the numbers are 4*3 = 12 , 4*3^2 = 36
first 3 are 4 , 12 and 36 ( in geometric)
and last 3 are 12, 36 and 60 ( in arithmetic)
The 2 numbers we ause are 12 and 36.