Answer:440.03 N
Explanation:
Given
horizontal component of acceleration
vertical component of acceleration
mass of ball =0.37 kg
Force in horizontal direction
Force in vertical direction
Therefore net force is
|F|=440.03 N
The work done by the electric field in moving a charge is the negative of the potential energy difference between the two locations, which is the product between the magnitude of the charge q and the potential difference
:
The proton charge is
, and the two locations have potential of
and
, therefore the work is
Answer:
a) T = 1,467 s
, b) A = 0.495 m
, c) v = 4.97 10⁻² m / s
Explanation:
The simple harmonic movement is described by the expression
x = A cos (wt + Ф)
Where the angular velocity is
w = √ k / m
a) Ask the period
Angular velocity, frequency and period are related
w = 2π f = 2π / T
T = 2π / w
T = 2pi √ m / k
T = 2π √ (1.2 / 22)
T = 1,467 s
f = 1 / T
f = 0.68 Hz
b) ask the amplitude
The mechanical energy of a harmonic oscillator
E = ½ k A²
A = √2 E / k
A = √ (2 2.7 / 22)
A = 0.495 m
c) the mass changes to 8.0 kg
As released from rest Ф = 0, the equation remains
x = A cos wt
w = √ (22/8)
w = 1,658
x = 3.0 cos (1,658 t)
Speed is
v = dx / dt
v = -A w sin wt
The speed is maximum when without wt = ±1
v = Aw
v = 0.03 1,658
v = 4.97 10⁻² m / s
Answer: Reflection is the only process in which the wave does not continue moving forward.
Explanation:
Reflection is a process in which the direction of the wave changes when it is exposed to a bounce off barrier. Refraction can be defined as the change in the direction of the wave when the wave passes through one medium to another. Diffraction is a process in which the direction of the wave changes when the wave passes through a particular opening near the barrier.
The body will take 20 seconds to cover a distance of 1000 m i.e. 1 km