Given:
The length of the string is l = 6 m
The speed of the wave is

Required: Lowest possible frequency for the standing wave.
Explanation:
The lowest possible frequency is the fundamental frequency.
The fundamental frequency can be calculated by the formula

On substituting the values, the fundamental frequency will be

Final Answer: The lowest possible frequency for standing waves on this string is 16.67 Hz
That is because work requires energy. According to the law of conservation of energy, it cannot be created or destroyed. When doing work, energy change forms and gets transferred to the object until it is released.
for example, when you lift up an object and place it on a higher elevation, you transferred energy to it and gave it potential energy. The potential energy is transformed into kinetic energy when the object falls down, and if it hits a surface, the energy will scatter, vibrating the areas around it and producing sound.
Also, work= force X distance. The energy does not go away, but rather get changed into some other form of energy
The speed is
v = 5t² + 4t
where
v is in m/s, and t in s.
The acceleration is the derivative of the velocity. It is
a = 10t + 4
When t = 2 s, the acceleration is
a(2) = 10*2 +4 = 24 m/s²
Answer: 24 m/s²
Answer:
Yes, the velocity of the object can reverse direction when its acceleration is constant. For example consider that the velocity of any object at any time t is given as: ... At At t = 0 sec, the magnitude of velocity is 2m/s and is moving in the forward direction i.e.v (t) = -2.