Answer:
It traveled 4 centimeters.
Explanation:
In a speed versus time graph, the distance travelled is given by the area under the graph.
In this graph we have the following:
- The speed of the object is v = 1 cm/s between time t = 0 s and t = 4 s
- The speed of the object is v = 0 cm/s between time t = 4 s and t = 8 s
Since the speed in the second part is zero, the distance travelled in the second part is zero. So, the only distance travelled by the object is the distance travelled during the first part, which is equal to the area of the first rectangle:

Answer:
A car accelerating to the right
Explanation:
The free-body diagram shows all the forces acting on an object. The length of each arrow is proportional to the magnitude of the force represented by that arrow.
In this free-body diagram, we see that there are 4 forces acting on the object, in 4 different directions. We also see that the two vertical forces are equal so they are balanced, while the force to the rigth is larger than the force to the left: this means that there is a net force to the right, so the object is accelerating to the right.
Therefore, the correct answer is:
A car accelerating to the right
The force that keeps the puck moving is 0.25 N while the velocity of the puck is 3.7 m/s.
<h3>What is the centripetal force?</h3>
We know that the centripetal force is the force that acts on a body that is moving along a circular path. In this case, we are told that the puck is moving along a circular path hence it is acted upon by the centripetal force that acts on it.
The centripetal force in this case would be supplied by the weight of the object that is moving in the circular path. Thus we can write in our equation that;
Centripetal force = Weight of object = mg
m = mass of the object
g = acceleration due to gravity
Then;
W = 0.026 Kg * 9.8 m/s^2
W = 0.25 N
To obtain the velocity of the object;
FT = mv^2/r
v = √ FT r/m
v = √0.25 * 1.4/0.026
v = 3.7 m/s
Learn more about centripetal force:brainly.com/question/11324711
#SPJ1
A diverging lens never produces a real image because the actual light rays never converge. They always diverge. ... A diverging virtual image is always SMALLER than the object. A converging virtual image is always LARGER than the object