If the gymnast mass were doubled, her height (h) from the top of the board would be as follows,
с Stay the same
Explanation:
- The Mass of an object or body does not affect the acceleration due to gravity in any kind of way.
- Light weight objects accelerate more slowly than the heavy objects because when the forces other than the gravity also plays a major role.
- Mass increases of a body when an object has higher velocity or the speed.
- The greater the force of gravity, it would give a direct impact on the object's acceleration; thus considering only a force, the heavier the object is, it would accelerate faster. But an acceleration depends upon the two factors which are force and mass.
- Newton's second law of motion states that the acceleration of an object is dependent upon the two factors which are, the net force of an object and the mass of the object.
Answer: 0.5 m/s
Explanation:
Given
Speed of the sled, v = 0.55 m/s
Total mass, m = 96.5 kg
Mass of the rock, m1 = 0.3 kg
Speed of the rock, v1 = 17.5 m/s
To solve this, we would use the law of conservation of momentum
Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns
When the man throws the rock forward
rock:
m1 = 0.300 kg
V1 = 17.5 m/s, in the same direction of the sled with the man
m2 = 96.5 kg - 0.300 kg = 96.2 kg
v2 = ?
Law of conservation of momentum states that the momentum is equal before and after the throw.
momentum before throw = momentum after throw
53.08 = 0.300 * 17.5 + 96.2 * v2
53.08 = 5.25 + 96.2 * v2
v2 = [53.08 - 5.25 ] / 96.2
v2 = 47.83 / 96.2
v2 = 0.497 ~= 0.50 m/s
D.) Rubbing your hands together
Hope this helps! ( brainleist??)