I'm pretty sure the answer is B: <span>establish public doubt
Hope this helps!</span>
Answer:
Work= -7.68×10⁻¹⁴J
Explanation:
Given data
q₁=q₂=1.6×10⁻¹⁹C
r₁=2.00×10⁻¹⁰m
r₂=3.00×10⁻¹⁵m
To find
Work
Solution
The work done on the charge is equal to difference in potential energy
W=ΔU
![Work=U_{1}-U_{2}\\ Work=-kq_{1}q_{2}[\frac{1}{r_{2}}-\frac{1}{r_{1}} ]\\Work=(-9*10^{9})*(1.6*10^{-19} )^{2}[\frac{1}{3.0*10^{-15} }-\frac{1}{2*10^{-10} } ]\\ Work=-7.68*10^{-14}J](https://tex.z-dn.net/?f=Work%3DU_%7B1%7D-U_%7B2%7D%5C%5C%20Work%3D-kq_%7B1%7Dq_%7B2%7D%5B%5Cfrac%7B1%7D%7Br_%7B2%7D%7D-%5Cfrac%7B1%7D%7Br_%7B1%7D%7D%20%5D%5C%5CWork%3D%28-9%2A10%5E%7B9%7D%29%2A%281.6%2A10%5E%7B-19%7D%20%29%5E%7B2%7D%5B%5Cfrac%7B1%7D%7B3.0%2A10%5E%7B-15%7D%20%7D-%5Cfrac%7B1%7D%7B2%2A10%5E%7B-10%7D%20%7D%20%5D%5C%5C%20%20Work%3D-7.68%2A10%5E%7B-14%7DJ)
Answer:
the terminal velocity v_t= 202.96 m/s≅203 m/s
Explanation:
The expression for the terminal velocity

here, C_d is the drag coefficient for the cylinder is 1.15
The surface density of the air at 20°C is
ρ_surface = 1.2041 kg/m^3
the density of air at an altitude of 39000 m
ρ= 4.3/100×39000 = 0.05177 kg/m^3
now substitute these values in equation above
we get

v_t= 202.96 m/s≅203 m/s
the terminal velocity v_t= 202.96 m/s≅203 m/s
Answer:
Final velocity will be equal to 0.321 m/sec
Explanation:
We have given mass of clay model of lion 
Its speed is 0.85 m/sec, so 
Mass of another clay model 
It is given that second clay is motionless
So its velocity 
Now according to conservation of momentum
Momentum before collision will be equal to momentum after collision
So
, here v is velocity after collision
So 

v = 0.321 m/sec
So final velocity will be equal to 0.321 m/sec
The gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
<h3>What is the gravitational force of the earth on the person?</h3>
The gravitational force exerted by the earth on a person standing on the earth's surface is given below as follows:
where
G = 6.67 * 10⁻¹¹
m¹ = 62 kg
m² = 5.97 * 10²⁷ kg
r = 6.4 * 10⁶ m

Therefore, the gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
Learn more about gravitational force at: brainly.com/question/940770
#SPJ1