Answer:
Its length is measured to be 0.5 m
Explanation:
From theory of relativity (mass variation), we know that:
m = mo/√(1-v²/c²)
Where, m = relative mass
and, mo = rest mass
The momentum of stick while moving, will be:
P = mv
but, it is given in the form of rest mass as:
P = 2(mo)v
thus, by comparison;
2(mo)v = mv
using value of m from theory of relativity;
2(mo)v = (mo)v/√(1-v²/c²)
√(1-v²/c²) = 1/2 ______ eqn(1)
Now, for relativistic length (L), we have the formula from same theory of relativity;
L = (Lo)√(1-v²/c²)
The rest length (Lo) of meter stick is 1 m, and the remaining term on right side √(1-v²/c²), known as Lorentz Factor, can be given by eqn (1), as equal to 1/2.
Thus,
L = (1 m)(1/2)
<u>L = 0.5 m</u>
Answer:
The current would be same in both situation.
Explanation:
Given that,
Current I = 13 A
Number of turns = 23
We need to calculate the induced emf
Using formula of induced emf is

For N = 1

We need to calculate the current
Using formula of current

Put the value of emf

Now, if the number of turn is 22 , then induced emf would be

Then the current would be




Hence, The current would be same in both situation.
The average rate at which the cable does work is 294,000 J/s.
The given parameters:
- <em>mass, m = 3000 kg</em>
- <em>height, h = 200 m</em>
- <em>time of motion, t = 20 s</em>
The average rate at which the cable does work is calculated as follows;

Thus, the average rate at which the cable does work is 294,000 J/s.
Learn more about energy and power here: brainly.com/question/13387946
Answer:
13.5
Explanation:
Mass: 5kg
Initial Velocity: -15
Final Velocity: 12
Force: 10
We can use the equation: Vf = Vi + at
We need to find acceleration, and we can use the equation, F=ma,
We have mass and the force so it would look like this, 10=5a, and 5 times 2 would equal 10, so acceleration would be 2.
Now we have all the variables to find time.
Back to Vf = Vi + at, plug the numbers in, 12 = -15 + 2(t)
Plugging them in into desmos gives 13.5 for time.