Answer:
I don't now sorry HHHAHAH GOOD LUCK
Answer:
C. 1500.
Explanation:
750 / .5 = 1500.
Hope this helps & best of luck!
Feel free to message me if you need more help! :)
Answer:
<em>The period of the motion will still be equal to T.</em>
<em></em>
Explanation:
for a system with mass = M
attached to a massless spring.
If the system is set in motion with an amplitude (distance from equilibrium position) A
and has period T
The equation for the period T is given as

where k is the spring constant
If the amplitude is doubled, the distance from equilibrium position to the displacement is doubled.
Increasing the amplitude also increases the restoring force. An increase in the restoring force means the mass is now accelerated to cover more distance in the same period, so the restoring force cancels the effect of the increase in amplitude. Hence, <em>increasing the amplitude has no effect on the period of the mass and spring system.</em>
(A)energy lost in the lever due to friction
(C)
visual estimation of height of the beanbag
(E)position of the fulcrum for the lever affecting transfer of energy
Answer:
- 0.6
Explanation:
Given that angle between normal y axis is 62° so angle between normal
and x axis will be 90- 62 = 28 °. Since incident ray is along x axis , 28 ° will be the angle between incident ray and normal ie it will be angle of incidence
Angle of incidence = 28 °
angle of reflection = 28°
Angle between incident ray and reflected ray = 28 + 28 = 56 °
Angle between x axis and reflected ray = 56 °
x component of reflected ray
= - cos 56 ( it will be towards - ve x axis. )
- 0.6