Answer: Having Pure Water Is Zero.
Explanation: ...
Answer:
T = 92.8 min
Explanation:
Given:
The altitude of the International Space Station t minutes after its perigee (closest point), in kilometers, is given by:

Find:
- How long does the International Space Station take to orbit the earth? Give an exact answer.
Solution:
- Using the the expression given we can extract the angular speed of the International Space Station orbit:

- Where the coefficient of t is angular speed of orbit w = 2*p / 92.8
- We know that the relation between angular speed w and time period T of an orbit is related by:
T = 2*p / w
T = 2*p / (2*p / 92.8)
Hence, T = 92.8 min
Answer:
A. 2.82 eV
B. 439nm
C. 59.5 angstroms
Explanation:
A. To calculate the energy of the photon emitted you use the following formula:
(1)
n1: final state = 5
n2: initial state = 2
Where the energy is electron volts. You replace the values of n1 and n2 in the equation (1):

B. The energy of the emitted photon is given by the following formula:
(2)
h: Planck's constant = 6.62*10^{-34} kgm^2/s
c: speed of light = 3*10^8 m/s
λ: wavelength of the photon
You first convert the energy from eV to J:

Next, you use the equation (2) and solve for λ:

C. The radius of the orbit is given by:
(3)
where ao is the Bohr's radius = 2.380 Angstroms
You use the equation (3) with n=5:

hence, the radius of the atom in its 5-th state is 59.5 anstrongs
F = 750 N (Force)
d = 10 m (displacement
)
t = 25 s (time)
L = ? (Mechanical work
) = (Energy)
P = ? (Power)
Solve:
L = F × d = 750 × 10 = 7500 Joules
P = L / t = 7500 / 25 = 300 Watts