Answer:
The molecular formule for this unknow molecule is C2H4O2
Explanation:
The empirical formula is CH2O ( or better said CnH2nOn)
This means there are 3 elements in the formula of this molecule
⇒ Carbon (C) with a Molar mass of 12 g/mole
⇒ Hydrogen (H) with a Molar mass of 1 g/mole
⇒ Oxygen (O) with a Molar mass of 16 g/mole
We can also notice that the amount of hydrogen should 2x the amount of carbon ( also 2x the amount of oxygen).
The mass of the empirical formule = 12g/ mole + 2* 1 g/mole + 16 g/mole = 30 g/mole
To know what number is n in CnH2nOn we should divide the molecular mass by the empirical mass:
60 g/mole / 30g/mole = 2
this means n = 2
and this will give a molecular formule of C2H4O2
We can control this to calculate the molecular mass:
2*12 + 4* 1 + 2*16 = 24 + 4 + 32 = 60 g/mole
The molecular formule for this unknow molecule is C2H4O2
Answer:
+/- 0.00033
Explanation:
For a 95 % confidence interval the range is given by
+/- Z * s/sqrt(n)
where Z value is 1.916 for a 95% confidence interval
Therefore the interval is
s is the standard deviation in this case 0.0015
n is 75 the number of outposts
calculating,
+/- 1.916 * 0.0015/sqrt(75) = +/- 0.00033
The volume of H₃PO₄ : 13.33 ml
<h3>Further explanation</h3>
Given
0.003 M Phosphoric acid-H₃PO₄
40 ml of 0.00150 M Calcium hydroxide-Ca(OH)₂
Required
Volume of H₃PO₄
Solution
Acid-base titration formula
Ma. Va. na = Mb. Vb. nb
Ma, Mb = acid base concentration
Va, Vb = acid base volume
na, nb = acid base valence (amount of H⁺/OH⁻)
H₃PO₄⇒3H⁺ + PO₄³⁻ ⇒ 3 H⁺ = valence = 3
Ca(OH)₂⇒Ca²⁺ + 2OH⁻⇒ 2 OH⁻ = valence = 2
Input the value :
a = H₃PO₄, b = Ca(OH)₂
0.003 x Va x 3 = 0.0015 x 40 x 2
Va = 13.33 ml
Answer:
Chlorine
Explanation:
The P usually stands for Protons, and that is usually the element number. (chlorine is 17) N is for neutron
Comparing the matter that makes up its different parts.
Hope this helps! ;)