Answer:
(slow)xy2+z→xy2z (fast) c step1:step2:xy2+z2→xy2z2
Explanation:
Step1: xy2+z2→xy2z2 (slow)
Step2: xy2z2→xy2z+z (fast)
2XY 2 + Z 2 → 2XY 2 Z
Rate= k[xy2][z2]
When the two elementary steps are summed up, the result is equivalent to the stoichiometric equation. Hence, this mechanism is acceptable. The order of both elementary steps is 2, which is ‘≤3’; this also makes this mechanism acceptable. Furthermore, the rate equation aligns with the experimentally determined rate equation, and this also makes this mechanism acceptable. Therefore, since all the three rules have been observed, this mechanism is possible.
Answer:
During MITOSIS, the parent, diploid (2n), cell is divided to create two identical, diploid (2n), daughter cells. ... After cytokinesis, the ploidy of the daughter cells remains the same because each daughter cell contains 4 chromatids, as the parent cell did.
1-energy
2- force
3- force
4- force
5- energy
6- energy
Answer:
-<em>9</em><em>.</em><em>6</em><em>7</em><em>5</em>
Explanation:
<em>c</em><em>o</em><em>r</em><em>r</em><em>e</em><em>c</em><em>t</em><em> </em><em>m</em><em>e</em><em> </em><em>i</em><em>f</em><em> </em><em>i</em><em>m</em><em> </em><em>w</em><em>r</em><em>o</em><em>n</em><em>g</em><em>.</em><em>!</em><em>!</em><em> </em><em />
Answer:
Iron remains = 17.49 mg
Explanation:
Half life of iron -55 = 2.737 years (Source)
Where, k is rate constant
So,
The rate constant, k = 0.2533 year⁻¹
Time = 2.41 years
= 32.2 mg
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
So,
<u>Iron remains = 17.49 mg</u>