<span>A solution with a pH of 4 has ten times the concentration of H</span>⁺<span> present compared to a solution with a pH of 5.
</span>pH <span>is a numeric scale for the acidity or basicity of an aqueous solution. It is the negative of the base 10 logarithm of the molar concentration of hydrogen ions.
</span>[H⁺] = 10∧-pH.
pH = 4 → [H⁺]₁ = 10⁻⁴ M = 0,0001 M.
pH = 5 → [H⁺]₂ = 10⁻⁵ M = 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 0,0001 M / 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 10.
Answer:
hi 5th grader, stop trying to cheat :)
Explanation:
It is important to use low flame when evaporating water from a recovered filtrate because then the water and filtrate will not spatter and the filtrate can also be recovered after evaporating water.
If flame is not low then water as well as got spatter so it is important to use low flame so that the water and filtrate will not spatter.
If 0.5 L of solution contains 4 mol
then let 1 L of solution contain x mol
⇒ (0.5 L) x = (4 mol) (1 L)
x = (4 mol · L) ÷ (0.5 L)
x = 8 mol
Thus the molarity of the Sodium Chloride solution is 8 mol / L OR 8 mol/dm³.
One difference between strong bases and weak bases is that a strong bases dissociate completely while weak bases do not. A strong base is a compound that completely ionizes into metal and hydroxide ions when in a solution, on the other hand weak bases only partially ionizes to metal and hydroxide ions in solution. An example of a weak base is ammonia and an example of a strong base is sodium hydroxide.