Answer:
identify the atoms on each side
count the atoms on its side
use coefficients to increase the atoms on each side
check to make sure you have the same number of each type of atom on each side
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
the correct answer would be the sun
Answer:
toilet seat and washing of hands ✋ very well
<h3><u>Answer;</u></h3>
When hydrogen is covalently bonded to an electronegative atom
<h3><u>Explanation;</u></h3>
- Hydrogen bonding is a special type of dipole-dipole attraction between molecules. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom.
- Highly electronegative atoms attract shared electrons more strongly than hydrogen does, resulting in a slight positive charge on the hydrogen atom. The slightly positive hydrogen atom is then attracted to another electronegative atom, forming a hydrogen bond.