Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹
Answer:
0.032 L or 32 mL
Explanation:
Use the dilution equation M1V1 = M2V2
M1 = 9.0 M
V1 = This is what we're looking for.
M2 = 0.145 M
V2 = 2 L
Solve for V1 --> V1 = M2V2/M1
V1 = (0.145 M)(2 L) / (9.0 M) = 0.032 L
Answer:
8.0356 * 10^-5 moles of NaHCO3
Explanation:
Sulphuric acid = H2SO4
Sodium bicarbonate = NaHCO3
The reaction between both compounds is given by;
2NaHCO3(aq) + H2SO4(aq) → Na2SO4(aq) + 2CO2(g) + 2H2O(l)
In the reactin above;
2 mol of NaHCO3 neutralizes 1 mol of H2SO4
At stp, 1 mol occupies 22.4 L;
1 mol = 22.4 L = 22400 mL
x mol = 0.9 mL
x = 0.9 / 22400 = 4.0178 * 10^-5 moles of H2SO4
Since 2 mol = 1 mol from the equation;
x mol = 4.0178 * 10^-5
x mol = 2 * 4.0178 * 10^-5
x = 8.0356 * 10^-5 moles of NaHCO3
1. put goggles on
2.but gloves on
3.put a lab coat on