Answer:
[A]²
Explanation:
Since the formation is independent of D, D is 0 order.
Since a quadruples when it is doubled it can be written as
2A^X= 4
To find the unknown power we can assume A= 1 to make the math simple. So When a = 2 (Because you doubled it) raised to X power it will equal 4
so the unknown power is 2
Making the rate law
[a]²[b]⁰
or simply just
[A]²
Answer:
C₅H₁₀O₅
Explanation:
1. Calculate the mass of each element in 2.78 mg of X.
(a) Mass of C

(b) Mass of H

(c) Mass of O
Mass of O = 3.5 - 1.400 - 0.2349 = 1.87 g
2. Calculate the moles of each element

3. Calculate the molar ratios
Divide all moles by the smallest number of moles.

4. Round the ratios to the nearest integer
C:H:O = 1:2:1
5. Write the empirical formula
The empirical formula is CH₂O.
6. Calculate the molecular formula.
EF Mass = (12.01 + 2.016 + 16.00) u = 30.03 u
The molecular formula is an integral multiple of the empirical formula.
MF = (EF)ₙ

MF = (CH₂O)₅ = C₅H₁₀O₅
The molecular formula of X is C₅H₁₀O₅.
Answer:- 12 km = 12000 m
Solution:- It's a metric unit conversion where we are asked to convert 12 km to m where km stands for kilometer and m stands for meter.
In metric conversions, kilo means 1000.
So, 1 km = 1000 m
It means, we multiply the given km by 1000 to get the answer in m as:

= 12000 m
Hence, 12 km = 12000 m.
Answer:
a. 
b. K = 192.9
c. Products are favored.
Explanation:
Hello!
a. In this case, according to the unbalanced chemical reaction we need to balance HCl as shown below:

In order to reach 2 hydrogen and chlorine atoms at both sides.
b. Here, given the concentrations at equilibrium and the following equilibrium expression, we have:
![K=\frac{[HCl]^2}{[H_2][Cl_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BHCl%5D%5E2%7D%7B%5BH_2%5D%5BCl_2%5D%7D)
Therefore, we plug in the data to obtain:

c. Finally, we infer that since K>>1 the forward reaction towards products is favored.
Best regards!
Answer:
248 mL
Explanation:
According to the law of conservation of energy, the sum of the heat absorbed by water (Qw) and the heat released by the coffee (Qc) is zero.
Qw + Qc = 0
Qw = -Qc [1]
We can calculate each heat using the following expression.
Q = c × m × ΔT
where,
- ΔT: change in the temperature
163 mL of coffee with a density of 0.997 g/mL have a mass of:
163 mL × 0.997 g/mL = 163 g
From [1]
Qw = -Qc
cw × mw × ΔTw = -cc × mc × ΔTc
mw × ΔTw = -mc × ΔTc
mw × (54.0°C-25.0°C) = -163 g × (54.0°C-97.9°C)
mw × 29.0°C = 163 g × 43.9°C
mw = 247 g
The volume corresponding to 247 g of water is:
247 g × (1 mL/0.997 g) = 248 mL