Answer:
0.33 cal⋅g-1°C-1
Explanation:
The amount of heat required is determined from the formula:
q= mcΔT
To see more:
https://api-project-1022638073839.appspot.com/questions/what-is-the-specific-heat-of-a-substance-if-1560-cal-are-required-to-raise-the-t#235434
The integrated rate law for a second-order reaction is given by:
![\frac{1}{[A]t} = \frac{1}{[A]0} + kt](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%20%20%5Cfrac%7B1%7D%7B%5BA%5D0%7D%20%2B%20kt%20)
where, [A]t= the concentration of A at time t,
[A]0= the concentration of A at time t=0
<span>k =</span> the rate constant for the reaction
<u>Given</u>: [A]0= 4 M, k = 0.0265 m–1min–1 and t = 180.0 min
Hence, ![\frac{1}{[A]t} = \frac{1}{4} + (0.0265 X 180)](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%280.0265%20X%20180%29%20)
<span> = 4.858</span>
<span><span><span>Therefore, [A]</span>t</span>= 0.2058 M.</span>
<span>
</span>
<span>Answer: C</span>oncentration of A, after 180 min, is 0.2058 M
Answer:
Choose the least electronegative atom other than H.
Explanation:
A Lewis structure consists of <em>terminal atoms</em> and one or more <em>central atoms</em>.
H can be <em>only a terminal atom</em> because it can form only one bond.
So the central atom must be either C or O.
The central atom is the less electronegative atom: C.
So, start the Lewis structure with a central C atom.
Then attach an O atom to get C-O.
Finally, attach the H atoms.
The condensed formula often gives you a clue where they go.
The formula CH₃OH implies that there are 3 H atoms on C and one on O.
The connectivity of the atoms is then as in the diagram below.
Hi there!
D is true
the number of protons is same as atomic number in an atom
good luck!