"<span>The image would be upside down, would look as tall as you, and would be at the same distance from the mirror as you are" is the type of image among the choices given in the question that would be projected. The correct option among all the options that are given in the question is the first option. I hope it helps you.</span>
Answer:
W ≅ 292.97 J
Explanation:
1)What is the work done by tension before the block goes up the incline? (On the horizontal surface.)
Workdone by the tension before the block goes up the incline on the horizontal surface can be calculated using the expression;
W = (Fcosθ)d
Given that:
Tension of the force = 62 N
angle of incline θ = 34°
distance d =5.7 m.
Then;
W = 62 × cos(34) × 5.7
W = 353.4 cos(34)
W = 353.4 × 0.8290
W = 292.9686 J
W ≅ 292.97 J
Hence, the work done by tension before the block goes up the incline = 292.97 J
Answer:
False, Sunspots appear dark (in visible light) due to their low temperature(cooler) than rest of the sun
Explanation:
Sunspots appear dark because they are much cooler( have low temperature than the rest of the surface contained by Sun. As they appear dark, but still they have very temperature that's why so hot. Sunspots have temperatures ranges 3,500 Celsius (3773 kelvin) and the surrounding surface of the sun has a temperature much higher of about 5,500 Celsius(5773 Kelvin). Even if we see a sunspot alone in space, it will glow so brightly.
Learn more about sunspots :
brainly.com/question/27774496
#SPJ4
Answer:
10 kg
Explanation:
The question is most likely asking for the mass of the bicycle.
Momentum is the product of an object's mass and velocity. Mathematically:
p = m * v
Where p = momentum
m = mass
v = velocity
Hence, mass is:
m = p / v
From the question:
p = 25 kgm/s
v = 2.5 m/s
Mass is:
m = 25 / 2.5 = 10 kg
The mass of the bicycle is 10 kg.
In case the question requires the Kinetic energy of the bicycle, it can be gotten by using the formula
K. E = ½ * p * v
K. E. = ½ * 25 * 2.5 = 31.25 J
A high pitch sound corresponds to a high-frequency sound wave and a low pitch sound corresponds to a low-frequency sound wave. So, the pitch of a note corresponds to the amount of frequency of a sound wave. Hope this helped!