At the entrance of most beaches, there is a bulletin board with notices about water conditions: maybe a faded sign warning about rip currents and a list of this week's tide tables. Most people pass them by without a second thought, but if you want to enter the ocean, it is important to know its movements, whether to avoid being caught in a riptide or to figure out when the waves will be at their best.
Hope this helps
One of the advantages is Cost efficiencies
<u><em>The question doesn't provide enough data to be solved, but I'm assuming some magnitudes to help you to solve your own problem</em></u>
Answer:
<em>The maximum height is 0.10 meters</em>
Explanation:
<u>Energy Transformation</u>
It's referred to as the change of one energy from one form to another or others. If we compress a spring and then release it with an object being launched on top of it, all the spring (elastic) potential energy is transformed into kinetic and gravitational energies. When the object stops in the air, all the initial energy is now gravitational potential energy.
If a spring of constant K is compressed a distance x, its potential energy is

When the launched object (mass m) reaches its max height h, all that energy is now gravitational, which is computed as

We have then,


Solving for h

We have little data to work on the problem, so we'll assume some values to answer the question and help to solve the problem at hand
Let's say: x=0.2 m (given), K=100 N/m, m=2 kg
Computing the maximum height


The maximum height is 0.10 meters
I'm pretty your it's magnetism though. Like magnets
Answer:
No
Explanation:
Please let me know if my answer is correct