This question is more for Biology than Chemistry, but the role of producers is to make energy (food) to be consumed. In a pyramid diagram, the producers would be at the bottom. Now going up the pyramid, the primary conumers are the first to consume producers and obtain energy from them. As you go up the pyramid, the secondary consumers will consume the primary consumers as a way to obtain energy, and the same goes for tertiary consumers towards secondaries.
As you go up the energy pyramid, you will notice a trend that there is less energy being obtained from each consumer. In other words, the producers will ALWAYS have more energy than the tertiary consumers.
I hope this answers your question.
Answer:
d. decomposition
Explanation:
decomposition reaction is a reaction in which a compound breaks down into 2 or more substances.
the general form is: AB → A + B
The empirical formula is N₂O₅.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the <em>molar ratio of N:O</em>.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio¹ </u> <u> ×2² </u> <u>Integers</u>³
N 1.85 1 2 2
O 4.63 2.503 5.005 5
¹To get the molar ratio, you divide each number of moles by the smallest number (1.85).
²Multiply these values by a number (2) that makes the numbers in the ratio close to integers.
³Round off the number in the ratio to integers (2 and 5).
The empirical formula is N₂O₅.
H2SO4 + 2RbOH -> Rb2SO4 + 2H2O
If you want an explanation, keep reading.
In the first portion, there are two hydrogen ions and four sulfate ions.
The second portion has one rubidium ions and one hydroxide ion.
On the other side of the equation, in order to keep those two rubidiums balanced, you'll need to add a two at the beginning of the second portion, but in that process you are giving a second hydroxide value.
Back to the right side, there is there is water (H2O).
On the first portion, there were two hydrogen ions. The second portion also has two hydroxides because of the value change (adding the two to the front).
So on the fourth portion, you'd have to add another two so you could balance the four hydrogen ions (H2 and 2OH) and the two oxygen ions (2OH).
I hope this was easy to understand.
Answer:
340 grams Ca₃P₂ (2 sig. figs.)
Explanation:
3Ca + 2P => Ca₃P₂
5.6 mole + excess => ? grams
Convert the 'known' to a coefficient of 1 by dividing all coefficients by 3.
=> Ca + 2/3P => 1/3Ca₃P₂
From the above, 1 mole of Ca => 1/3 mole Ca₃P₂
∴ 5.6 mole Ca in an excess of P => 1/3(5.6 mole) Ca₃P₂
=> 1.8666 mol Ca₃P₂ (calculator answer) ≅ 1.9 mol Ca₃P₂
=> 1.9 mole x 182 g Ca₃P₂/mol Ca₃P₂ = 339.73333 grams Ca₃P₂
≅ 340 grams Ca₃P₂ (2 sig. figs.)