Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
Answer:
13,400 m/s²
Explanation:
Average acceleration is the change in velocity over time:
a = Δv / t
a = (22.0 m/s − (-25.0 m/s)) / 0.00350 s
a = 13,400 m/s²
Answer:

Explanation:
the relation between current, voltage and resistance in an electrical circuit is given by Ohm's law:

where V is the voltage, I is the current and R is the resistance. In this problem, the current is I=2 A, the voltage is V=120 V, therefore we can arrange the previous equation and find the resistance:

Answer:
(A) Velocity will be 1.88 m/sec
(b) Force will be 187.45 N
Explanation:
We have given work done = 4780 j
Distance d = 25.5 m
(A) Mass of the truck m = 
We know that kinetic energy is given by

So 
(B) We know that work done is given by
W = Fd
So 