No spacecraft has been built yet that was able to absorb harmful
radiations in space, change weather conditions on Earth, or destroy
meteors and comets which might strike Earth.
We should continue to send robotic spacecrafts into space
because they help discard some myths about objects in space.
In other words, they help us learn things that we never knew before.
It would still be eastward because The direction of the velocity vector is always in the same direction as the direction which the object moves.
Answer:
The work done to get you safely away from the test is 2.47 X 10⁴ J.
Explanation:
Given;
length of the rope, L = 70 ft
mass per unit length of the rope, μ = 2 lb/ft
your mass, W = 120 lbs
mass of the 70 ft rope = 2 lb/ft x 70 ft
= 140 lbs.
Total mass to be pulled to the helicopter, M = 120 lbs + 140 lbs
= 260 lbs
The work done is calculated from work-energy theorem as follows;
W = Mgh
where;
g is acceleration due gravity = 32.17 ft/s²
h is height the total mass is raised = length of the rope = 70 ft
W = 260 Lb x 32.17 ft/s² x 70 ft
W = 585494 lb.ft²/s²
1 lb.ft²/s² = 0.0421 J
W = 585494 lb.ft²/s² = 2.47 X 10⁴ J.
Therefore, the work done to get you safely away from the test is 2.47 X 10⁴ J.
Since kinetic energy is a form of energy using the equation KE=¹/₂mv², the units of measurement is in Joules (J). Therefore, the tennis ball had more kinetic energy than the baseball since velocity is a larger factor than the mass is when determining kinetic energy.