Volume = mass / density
Volume = 20 / 7.87
Volume = 2.54 (2 s.f)
Answer:
recall that heat absorbed released is given by
Q = mc*(T2 - T1)
where
m = mass (in g)
c = specific heat capacity (in J/g-k)
T = temperature (in C or K)
*note: Q is (+) when heat is absorbed and (-) when heat is released.
substituting,
Q = (480)*(0.97)*(234 - 22)
Q = 98707 J = 98.7 kJ
Explanation:
When you ask for "joules per second", you're asking for "watts".
The rate of energy "transfer" is 'power'. In this case, the light bulb
transfers energy out of the electrical circuit and into the space
around it, in the form of light and heat radiation.
Electrical power = (voltage) x (current) =
(6 volts) x (0.5 ampere) =
3 watts = 3 joules per second.
Answer:
Approximately
(given that the magnitude of this charge is
.)
Explanation:
If a charge of magnitude
is placed in an electric field of magnitude
, the magnitude of the electrostatic force on that charge would be
.
The magnitude of this charge is
. Apply the unit conversion
:
.
An electric field of magnitude
would exert on this charge a force with a magnitude of:
.
Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.
Answer:
You have a displacement of 5 units to the right.
Explanation:
First you go three to the right which lands on the 3 mark. Then you move it 4 to the left which substracts 4, landing the object at -1. Finally you move 6 to the right, and you finish at marker 5. Since displacement is not total distance but just final distance from the start point directly to end point, it is only a displacement of 5.