Answer:
Explanation:
a ) y = A sin(B) ; here B is the phase of the wave which moves so that it remains constant
ωt - kx = constant
differentiating on both sides
ωdt - kdx =0
ωdt = kdx
dx / dt = ω / k
wave velocity = ω / k
b ) ω = 14.5 rad / s ,
k = 18 rad / m
wave velocity = ω / k
= 14.5 / 18
= .805 m /s
80.5 cm / s
c )
Amplitude = A
= 9.5 m
Answer:
Explanation:
T₁ = 700 + 273 = 973 k
T₂ = 330 + 273 = 603 k
Theoretical efficiency = T₁ - T₂ / T₁
= (973 - 603) / 973
= .38 OR 38%
Operating efficiency = .79 x 38
= 30.02 %
Heat input Q₁ , Heat output to sink Q₂ , conversion into power = Q₁ - Q₂
given Q₁ - Q₂ = 1.3 x 10⁹ W
efficiency = Q₁ - Q₂ / Q₁
Q₁ - Q₂ / Q₁ = 30.02 / 100
100Q₁ - 100Q₂ = 30.02Q₁
69.98 Q₁ = 100Q₂
Q₁ = 1.429 Q₂
Putting this in the relation
Q₁ - Q₂ = 1.3 x 10⁹ W
1.429Q₂ - Q₂ = 1.3 x 10⁹ W
.429Q₂ = 1.3 x 10⁹
Q₂ = 3.03 x 10⁹W
= 3.03 GW.
The central vacuole<span> is a </span>cellular<span> organelle found in</span>plant cells<span>. It is often the largest organelle in the </span>cell<span>. It is surrounded by a membrane and functions to hold materials and wastes. It also functions to maintain the proper pressure within the </span>plant cells<span> to provide structure and support for the growing</span>plant<span>.</span>
17 , d . because a force is being applied but it is not moving .
19 . is c .
20 .b .
21 . d .
31 . d .