Answer:
c. The forces acting on the box are balanced.
The average velocity can be calculated using the formula:
v = d / t
For the 1st car, the velocity is calculated
as:
v1 = 8.60 m / 1.80 s = 4.78 m / s
While that of the 2nd car is:
v2 = 8.60 m / 1.66 s = 5.18 m / s
Now we can solve for the acceleration using the formula:
v2^2 = v1^2 + 2 a d
Rewriting in terms of a:
a = (v2^2 – v1^2) / 2 d
a = (5.18^2 – 4.78^2) / (2 * 8.6)
a = 0.23 m/s
Therefore the train has a constant acceleration of about
0.23 meters per second.
Answer:
time constant will decrease and steady state current will decrease on increasing the resistance
Explanation:
As we know that the EMF of cell is E which is used to connected across a resistor and an inductor.
So we will have

here we know that

now here we have

so if we increase the value of resistance of the wire then the time constant will decrease
and hence it will take less time to reach near the steady state value
also the steady state current will be smaller in that case
Answer:
a) velocity v = 322.5m/s
b) time t = 19.27s
Explanation:
Note that;
ads = vdv
where
a is acceleration
s is distance
v is velocity
Given;
a = 6 + 0.02s
so,

Remember that
![v = \frac{ds}{dt} \\\frac{ds}{v} = dt\\\int\limits^s_0 {\frac{ds}{\sqrt{12s+0.02s^{2} } } } \, ds = \int\limits^t_0 {} \, dt \\t= (5\sqrt{2} ) ln \frac{| [s + 300 + \sqrt{(s^{2} + 600s)} ] |}{300} .......2](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bds%7D%7Bdt%7D%20%5C%5C%5Cfrac%7Bds%7D%7Bv%7D%20%3D%20dt%5C%5C%5Cint%5Climits%5Es_0%20%7B%5Cfrac%7Bds%7D%7B%5Csqrt%7B12s%2B0.02s%5E%7B2%7D%20%7D%20%7D%20%7D%20%5C%2C%20ds%20%3D%20%5Cint%5Climits%5Et_0%20%7B%7D%20%5C%2C%20dt%20%5C%5Ct%3D%20%20%285%5Csqrt%7B2%7D%20%29%20ln%20%20%5Cfrac%7B%7C%20%5Bs%20%2B%20300%20%2B%20%5Csqrt%7B%28s%5E%7B2%7D%20%20%2B%20600s%29%7D%20%5D%20%7C%7D%7B300%7D%20.......2)
substituting s = 2km =2000m, into equation 1
v = 322.5m/s
substituting s = 2000m into equation 2
t = 19.27s