Answer:
1.68 s
Explanation:
From newton's equation of motion,
a = (v-u)/t.................................. Equation 1
Making t the subject of the equation
t =(v-u)g............................. Equation 2
Where t = time taken for the bowling pin to reach the maximum height, v = final velocity bowling pin, u = initial velocity of the bowling pin, g = acceleration due to gravity.
Note: Taking upward to be negative and down ward to be positive,
Given: v = 0 m/s ( at the maximum height), u = 8.20 m/s, g = -9.8 m/s²
t = (0-8.20)/-9.8
t = -8.20/-9.8
t = 0.84 s.
But,
T = 2t
Where T = time taken for the bowling pin to return to the juggler's hand.
T = 2(0.84)
T = 1.68 s.
T = 1.68 s
im in flvs too if thats what this is but anyway im doing it right now and i believe it is sunlight was not kept constant
You use more significant figures. 5 sigfigs (1.0985) is more accurate than 2 sigfigs (1.0)
Answer: The center of gravity is 1.1338 m away from the left side of the barbell
Explanation:
Length of the barbell = 1.90 m
The distance center of gravity from left = x
Mass on the left side = 25 kg
The distance center of gravity from right = 1.90 - x
Mass on the right side = 37 kg
At the balance point: 


The center of gravity is 1.1338 m away from the left side of the barbell
Answer: The free ending nerves.
Explanation:
At our fingertips, we have a lot of sensory nerve endings, that give information about changes that occur at your skin.
Like touching something with a given texture, feeling pain, or noticing changes in temperature.
There are different types of nerve endings, particularly the ones responsible to detect pain, and temperature are the free nerve endings.
So Marcus may have the free nerve endings damaged.