The volume of 0. 250 mole sample of
gas occupy if it had a pressure of 1. 70 atm and a temperature of 35 °C is 3.71 L.
Calculation,
According to ideal gas equation which is known as ideal gas law,
PV =n RT
- P is the pressure of the hydrogen gas = 1.7 atm
- Vis the volume of the hydrogen gas = ?
- n is the number of the hydrogen gas = 0.25 mole
- R is the universal gas constant = 0.082 atm L/mole K
- T is the temperature of the sample = 35°C = 35 + 273 = 308 K
By putting all the values of the given data like pressure temperature universal gas constant and number of moles in equation (i) we get ,
1.7 atm×V = 0.25 mole ×0.082 × 208 K
V = 0.25 mole ×0.082atm L /mole K × 308 K /1.7 atm
V = 3.71 L
So, volume of the sample of the hydrogen gas occupy is 3.71 L.
learn more about ideal gas equation
brainly.com/question/4147359
#SPJ4
Medium about 3 second? Not sure lol just need more points honestly lol
1. A filter was used to separate the sand from the salt water solution (The process of decanting was used if a filer was not available).
2. A Bunsen burner was used to boil away the water from the salt water solution leaving only salt.
I hope this helps. Let me know if anything is unclear.
The best and most correct answer among the choices provided by your question is the second choice.
<span>Based on the reaction given above, as the temperature decreases, the formation of the reactants will increase.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!