Answer:
Theoretical yield of the reaction is 121·38 g
The excess reactant is hydrogen
The limiting reactant is nitrogen
Explanation:
By assuming that the reaction between nitrogen and hydrogen taking place in presence of catalyst because at normal conditions the reaction between them will not occur
Number of moles of nitrogen taken are 100÷28 ≈ 3.57
Number of moles of hydrogen taken are 100÷2 = 50
Actually the reaction between nitrogen and hydrogen takes place according to the following equation
<h3>N

+ 3H

→ 2NH

</h3>
So from the equation for 1 mole of nitrogen and 3 moles of hydrogen we get 2 moles of ammonia
Here in the problem we have approximately 3·57 moles of nitrogen so we require 3×3·57 moles of hydrogen
∴ Number of moles of hydrogen required is 10·71
But we have 50 moles of hydrogen
∴ Excess reagent is hydrogen and limiting reagent is nitrogen
Number of moles of ammonia produced is 2×3·57 = 7·14
Weight of ammonia is 17 g
∴ Amount of ammonia produced is 17×7·14 = 121·38 g
∴ Theoretical yield of the reaction is 121·38 g
The statement of the combined gas law for a fixed amount of gas is,
PV/T = constant
Here, the units of pressure and volume must be consistent and the temperature must be the absolute temperature (Kelvin or Rankine).
0.65 atm is equivalent to 494 mmHg
Using the equation:
(755 x 500) / (27 + 273) = (494 x V) / (-33 + 273)
V = 3396 ml = 3.4 liters
D. They all contain carbon as an important part of their structure.
The answer is Three
!!!!!!
Answer:
6. O₂ + Cu —> CuO
7. H₂ + Fe₂O₃ —> H₂O + Fe
8. O₂ + H₂ — > H₂O
9. H₂S + NaOH —> Na₂S + H₂O
10. Al + HCl —> H₂ + AlCl₃
Explanation:
6. Oxygen gas react with solid copper metal to form copper(II) oxide
Oxygen gas => O₂
Copper => Cu
copper(II) oxide => CuO
The equation is:
O₂ + Cu —> CuO
7. hydrogen gas and iron(III) oxide powder react to form liquid water and solid iron power
hydrogen gas => H₂
Iron(III) oxide => Fe₂O₃
Water => H₂O
Iron => Fe
The equation is:
H₂ + Fe₂O₃ —> H₂O + Fe
8. Oxygen gas react with hydrogen gas to form liquid water
Oxygen gas => O₂
hydrogen gas => H₂
Water => H₂O
The equation is:
O₂ + H₂ — > H₂O
9. Hydrogen sulphide gas is bubbled through a sodium hydroxide solution to produce sodium sulphide and liquid water
hydrogen sulphide => H₂S
sodium hydroxide => NaOH
Sodium sulphide => Na₂S
Water => H₂O
The equation is:
H₂S + NaOH —> Na₂S + H₂O
10. Hydrogen gas and aluminum chloride solutions are produced when solid aluminum react with hydrochloric acid
Aluminum => Al
Hydrochloric acid => HCl
hydrogen gas => H₂
Aluminum chloride => AlCl₃
The equation is:
Al + HCl —> H₂ + AlCl₃