1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katyanochek1 [597]
3 years ago
14

A bowling ball of mass 5.8 kg moves in a

Physics
1 answer:
evablogger [386]3 years ago
7 0

Answer:

Velocity of the ping pong ball must be = V2= 6,035.34m/s

Explanation:

M1= momentum of the bowling ball

m1 = mass of the bowling ball= 5.8kg

v1= velocity of the bowling ball= 1.59m/s

M2= momentum of the ping pong ball

m2= mass of the ping pong ball= 1.528 g/1000=  0.001528kg

v2= velocity of the ping pong ball

Momentum of the bowling ball= M1= m1v1= 5.8* 1.59= 9.222 kg-m/s

Momentum of the ping pong ball = M2= M1= m2v2

= 0.001528 *v2= 9.222

v2= 9.222/0.001528= 6,035.34 m/s

You might be interested in
Please Help!
e-lub [12.9K]

Answer:

Q9. Man who received the most altercations for a theory which later on became a revolutionary theory influenced in many areas of modern science and technology.

Q10. Fire truck is coming towards you

Explanation:

Q9. Christian  Doppler was born on 29th of November 1803 in Saltzburg. After studies in Linz and Vienna, he graduated in Mathematics. For many years, Doppler struggled to find work in academia, and for a time he worked as a bookkeeper at a factory. His academic career took him from Austria to Prague, where he became assistant at the University and later worked as professor in Prague. Back to Vienna, he was appointed as professor at the Polytechnic School and in 1850 as first director of the new Institute of Physics. While working at Vienna, his health broke down and moved Venice where he sought his eternal rest on March 17th, 1953.

During his lifetime, the man was quite controversial: a personality praised by some, but detested by others; and even as a scientist, he had a difficult time. He did publish papers on magnetism, electricity, optics and astronomy but, the discovery that allowed him to remain in history of science was the one he presented at Royal Bohemian Society of Science entitled "On the colored light of the double stars and certain other stars of the heavens" in 1842. He hypothesized that the pitch of the sound would change if the source was moving.

Doppler's ideas were initially received with a certain amount of skepticism so, in order to support his claims, he devised an experiment in 1845 with the help of colleague. He used two sets of trumpeters, one set stationary at a train station and  one set moving on an open train car. Both sets of musicians had perfect pitch and held the same note. As the train passed the station, it was obvious that the frequency of the two notes didn't match, even though the musicians were playing same note. This proved his hypothesis.

Demonstrating that the Doppler effect also held true for frequency of ligh proved more difficult and was never successfully achieved before Doppler's demise. The first experiment that revealed a Doppler shift in starlight was carried out at the beginning of twentieth century. Since then Doppler effect was proved invaluable for astronomical observations.

For the most of the academic world, he is known as physicist; but one can equally find him on the list of mathematicians and astronomers too. This is proof for the exceptional broad spectrum of application of his main discovery.

Q10. When there is increase in frequency of the sound from source, then the source is moving towards you. Hence the fire truck is coming towards you

3 0
3 years ago
Scientific theories are deductive in nature.?
dolphi86 [110]

Answer:

deductive reasoning usually follows steps .

  • That is, how we predict what the observations should be if the theory were correct

8 0
3 years ago
Solution A has a specific heat of 2.0 J/g◦C. Solution B has a specific heat of 3.8 J/g◦C. If equal masses of both solutions start
fgiga [73]

Answer: 2. Solution A attains a higher temperature.

Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.

In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.

Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.

<em>We have a formula for such condition,</em>

Q=m.c.\Delta T.....................................(1)

where:

  • \Delta T= temperature difference
  • Q= heat energy
  • m= mass of the body
  • c= specific heat of the body

<u>Proving mathematically:</u>

<em>According to the given conditions</em>

  • we have equal masses of two solutions A & B, i.e. m_A=m_B
  • equal heat is supplied to both the solutions, i.e. Q_A=Q_B
  • specific heat of solution A, c_{A}=2.0 J.g^{-1} .\degree C^{-1}
  • specific heat of solution B, c_{B}=3.8 J.g^{-1} .\degree C^{-1}
  • \Delta T_A & \Delta T_B are the change in temperatures of the respective solutions.

Now, putting the above values

Q_A=Q_B

m_A.c_A. \Delta T_A=m_B.c_B . \Delta T_B\\\\2.0\times \Delta T_A=3.8 \times \Delta T_B\\\\ \Delta T_A=\frac{3.8}{2.0}\times \Delta T_B\\\\\\\frac{\Delta T_{A}}{\Delta T_{B}} = \frac{3.8}{2.0}>1

Which proves that solution A attains a higher temperature than solution B.

7 0
3 years ago
True or False: A chemical reaction always happens when two substances are combined. (please help fast this is a test)
Makovka662 [10]

Answer:

no not always sometimes they react at all so false I hope I helped :)

6 0
3 years ago
Read 2 more answers
A small grinding wheel has a moment of inertia of 4.0*10-5kgm2. What net torque must be applied to the wheel for its angular acc
kvv77 [185]

Hi there!

We can use the rotational equivalent of Newton's Second Law:

\huge\boxed{\Sigma \tau = I \alpha}

Στ = Net Torque (Nm)

I = Moment of inertia (kgm²)

α = Angular acceleration (rad/sec²)

We can plug in the given values to solve.

\Sigma \tau = (4 * 10^{-5})(150) = \boxed{0.006 Nm}

4 0
3 years ago
Other questions:
  • In gym class you run 22 m horizontally, then climb a rope vertically for 6.2 m. What is the direction angle of your total displa
    14·2 answers
  • If the magnitude of F1 is greater than the magnitude of F2, then the box is
    9·2 answers
  • At an amusement park there is a ride in which cylindrically shaped chambers spin around a central axis. People sit in seats faci
    15·1 answer
  • Please help on this one
    13·1 answer
  • What layer of the atmosphere is made mostly of hydrogen and helium?
    8·1 answer
  • A converging lens of focal length 20 cm is placed in contact with a diverging lens of focal length 30 cm. The focal length of th
    7·1 answer
  • if you were to increase either mass or speed by a unit of 1 in a joules calculation, which would give you more energy?
    15·1 answer
  • Which of the following statements is true vibrations ?
    5·1 answer
  • Explain concept of donor levels and accepter levels in extrinsic semiconductors and How can Fermi level be defined for conductor
    12·1 answer
  • Car 1 of mass m1 is waiting at a traffic light.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!