Answer:
A) Therefore if I double the masses with are in the two terrine they are simplified and the radii of the speeds remain the same
B) If the masses are maintained and the speeds are doubled, the radius of the two speeds remains the same
Explanation:
A vehicle crash problem must be solved with the equation of the moment,
Initial instant Before crash
p₀ = m v₁ + mv₂
After the crash
= m
+ m 
p₀ = 
If the speed ratio before and after the crash is one
p₀ /
= 1
We can assume that initially one of the cars was stopped
m v₁₀ = m 
v₁₀ = 
For the two speeds to be equal, the masses of the vehicles must be the same.
A) Therefore if I double the masses with are in the two terrine they are simplified and the radii of the speeds remain the same
B) If the masses are maintained and the speeds are doubled, the radius of the two speeds remains the same
Answer:
a. 125 kJ
Explanation:
Her total energy is the same as the potential energy she had at the top of the hill:
PE = mgh
= (52 kg)(9.8 m/s^2)(245 m) = 124,852 J
≈ 125 kJ . . . . matches choice A
_____
After skiing down 112 m, some of her initial energy is converted to kinetic energy, and some remains as potential energy. We assume the ski slope is essentially frictionless, and air resistance is negligible.
Answer:
a= 17.69 m/s^2
Explanation:
Step one:
given data
A car accelerates uniformly from rest to 23 m/s
u= 0m/s
v= 23m/s
distance= 30m
Step two:
We know that
acceleration= velocity/time
also,
velocity= distance/time
23= 30/t
t= 30/23
t= 1.30 seconds
hence
acceleration= 23/1.30
accelaration= 17.69 m/s^2
The magnitude of the force acting on the object lying on a flat surface without moving is 10 N.
The given parameters;
- magnitude of force on the object, F = 10 N
- angle between the object and the horizontal flat surface = 0⁰
Apply Newton's second law of motion to determine the magnitude of the force on the object.
Due to the position of the object, the magnitude of the force acting on it is calculated as;

Therefore, the magnitude of the force acting on the object is 10 N.
Learn more here: brainly.com/question/19887955
Answer:
The acceleration of the crate is
.
Explanation:
Given that,
Force, F = 750 N
Mass of the crate, m = 250 kg
The coefficient of friction is 0.12.
We need to find the acceleration of the crate. The net force acting on the crate is given by :

f is frictional force, 

So, the acceleration of the crate is
. Hence, this is the required solution.