Answer:
Explanation:
Charge on uranium ion = charge of a single electron
= 1.6 x 10⁻¹⁹ C
charge on doubly ionised iron atom = charge of 2 electron
= 2 x 1.6 x 10⁻¹⁹ C = 3.2 x 10⁻¹⁹ C
Let the required distance from uranium ion be d .
force on electron at distance d from uranium ion
= 9 x 10⁹ x 1.6 x 10⁻¹⁹ / r²
force on electron at distance 61.10 x 10⁻⁹ - r from iron ion
= 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
For equilibrium ,
9 x 10⁹ x 1.6 x 10⁻¹⁹ / r² = 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
2 d² = (61.10 x 10⁻⁹ - r )²
1.414 r = 61.10 x 10⁻⁹ - r
2.414 r = 61.10 x 10⁻⁹
r = 25.31 nm .
Do you not understand how to solve for the answer?
Answer:
The law of conservation of mass or principle of mass conservation
Explanation:
It states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed.
The answer is carbon dioxide. This primordial earths’ atmosphere was composed by gasses from degassing of the earth's interior after its formation. It is after the beginning of life that oxygen levels began to rise and levels of carbon dioxide began to reduce in the atmosphere (as a result of photosynthesis).
Answer:
External force on him = 257.40 N
Equation is; F = ma (where 'f' is force, 'm' is mass and 'a' is acceleration)
Explanation:
The mass of the sprinter is 58.5 kg
His acceleration is 4.40 m/s²
According to Newton's second law of motion; F = ma
External force on the sprinter = 58.5 kg × 4.40 m/s² = 257.40 N