1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
atroni [7]
3 years ago
10

A hot air balloon is used as an air-vehicle to carry passengers. It is assumed that this balloon is sealed and has a spherical s

hape. Initially, the balloon is filled up with air at the pressure and temperature of 100 kPa and 27°C respectively and the initial diameter (D) of the balloon is 10 m. Then the balloon is heated up to the point that the volume is 1.2 times greater than the original volume (V2 =1.2V1 ). Due to elastic material used in this balloon, the inside pressure ( P ) is proportional to balloonâs diameter, i.e. P = ð¼D, where ð¼ is a constant.
Required:
a. Show that the process is polytropic (i.e. PV" = Constant) and find the exponent n and the constant.
b. Find the temperature at the end of the process by assuming air to be ideal gas.
c. Find the total amount of work that is done by the balloon's boundaries and the fraction of this work that is done on the surrounding atmospheric air at the pressure of 100 kPa.
Engineering
1 answer:
monitta3 years ago
4 0

Answer:

a. \dfrac{D_{1}}{ D_{2}}  =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n} which is constant therefore, n = constant

b. The temperature at the end of the process is 109.6°C

c. The work done by the balloon boundaries = 10.81 MJ

The work done on the surrounding atmospheric air = 10.6 MJ

Explanation:

p₁ = 100 kPa

T₁ = 27°C

D₁ = 10 m

v₂ = 1.2 × v₁

p ∝ α·D

α = Constant

v_1 = \dfrac{4}{3} \times  \pi \times r^3

\therefore v_1 = \dfrac{4}{3} \times  \pi \times  \left (\dfrac{10}{2}  \right )^3 = 523.6 \ m^3

v₂ = 1.2 × v₁ = 1.2 × 523.6 = 628.32 m³

Therefore, D₂ = 10.63 m

We check the following relation for a polytropic process;

\dfrac{p_{1}}{p_{2}} = \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} = \left (\dfrac{T_{1}}{T_{2}}   \right )^{\dfrac{n}{n-1}}

We have;

\dfrac{\alpha \times D_{1}}{\alpha \times D_{2}} = \left (\dfrac{ \dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_2}{2}  \right )^3}{\dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_1}{2}  \right )^3}   \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

\dfrac{D_{1}}{ D_{2}} = \left (\dfrac{   \left{D_2}  }{ {D_1}}   \right )^{3\times n} =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n}

\dfrac{ D_{1}}{ D_{2}} = \left ( 1.2  \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

log  \left (\dfrac{D_{1}}{ D_{2}}\right )  =  -3\times n \times log\left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )

n = -1/3

Therefore, the relation, pVⁿ = Constant

b. The temperature T₂ is found as follows;

\left (\dfrac{628.32 }{523.6}   \right )^{-\dfrac{1}{3} } = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{-\dfrac{1}{3}}{-\dfrac{1}{3}-1}} = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{1}{4}}

T₂ = 300.15/0.784 = 382.75 K = 109.6°C

c. W_{pdv} = \dfrac{p_1 \times v_1 -p_2 \times v_2 }{n-1}

p_2 = \dfrac{p_{1}}{ \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} } =  \dfrac{100\times 10^3}{ \left (1.2) \right  ^{-\dfrac{1}{3} } }

p₂ =  100000/0.941 = 106.265 kPa

W_{pdv} = \dfrac{100 \times 10^3 \times 523.6 -106.265 \times 10^3  \times 628.32 }{-\dfrac{1}{3} -1} = 10806697.1433 \ J

The work done by the balloon boundaries = 10.81 MJ

Work done against atmospheric pressure, Pₐ, is given by the relation;

Pₐ × (V₂ - V₁) = 1.01×10⁵×(628.32 - 523.6) = 10576695.3 J

The work done on the surrounding atmospheric air = 10.6 MJ

You might be interested in
What do you think of web 3.0? do you think it will be realized someday in the future?​
Elodia [21]

Answer:

is this a question for hoework

7 0
2 years ago
Create a program named PaintingDemo that instantiates an array of eight Room objects and demonstrates the Room methods. The Room
Serggg [28]

Answer:

Explanation:

Code used will be like

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace PaintingWall

{

class Room

{

public int length, width, height,Area,Gallons;

public Room(int l,int w,int h)

{

length = l;

width = w;

height = h;  

}

private int getLength()

{

return length;

}

private int getWidth()

{

return width;

}

private int getHeight()

{

return height;

}

public void WallAreaAndNumberGallons()

{

Area = getLength() * getHeight() * getWidth();

if (Area < 350)

{

Gallons = 1;

}

else if (Area > 350)

{

Gallons = 2;

}    

Console.WriteLine ("The area of the Room is " + Area);

Console.WriteLine("The number of gallons paint needed to paint the Room is " + Gallons);

}

 

}

class PaintingDemo

{

static void Main(string[] args)

{

int l, w, h;

Room[] r = new Room[8];

for (int i = 0; i <= 7; i++)

{

Console.WriteLine("Room "+(i+1));

Console.Write("Enter Length : ");

l = Convert.ToInt32(Console.ReadLine() );

Console.Write("Enter Width : ");

w = Convert.ToInt32(Console.ReadLine());

Console.Write("Enter Height : ");

h= Convert.ToInt32(Console.ReadLine());

r[i] = new Room(l,w,h);

Console.WriteLine();

}

for (int i = 0; i <= 7; i++)

{

Console.WriteLine("Room " + (i + 1));

r[i].WallAreaAndNumberGallons();

}

Console.ReadKey();  

}

}

}

3 0
3 years ago
Gas is kept in a 0.1 m diameter cylinder under the weight of a 100 kg piston that is held down by a spring with a stiffness k =
Artyom0805 [142]

Answer:

The spring is compressed by 0.275 meters.

Explanation:

For equilibrium of the gas and the piston the pressure exerted by the gas on the piston should be equal to the sum of  weight of the piston and the force the spring exerts on the piston

Mathematically we can write

Force_{pressure}=Force_{spring}+Weight_{piston}

we know that

Force_{pressure}=Pressure\times Area=300\times 10^{3}\times \frac{\pi \times 0.1^2}{4}=750\pi Newtons

Weight_{piston}=mass\times g=100\times 9.81=981Newtons

Now the force exerted by an spring compressed by a distance 'x' is given by Force_{spring}=k\cdot x=5\times 10^{3}\times x

Using the above quatities in the above relation we get

5\times 10^{3}\times x+981=750\pi \\\\\therefore x=\frac{750\pi -981}{5\times 10^{3}}=0.275meters

5 0
3 years ago
Four of the minterms of the completely specified function f(a, b, c, d) are m0, m1, m4, and m5.
Sveta_85 [38]

Complete Question

The complete question is shown on the first uploaded image

Answer:

a) The required additional minterms  for f so that f has eight primary implicants with two literals and no other prime implicant are m_{2},m_{3},m_{7},m_{8},m_{11},m_{12},m_{13},m_{14} and m_{15}

b) The essential prime implicant are c' d',a'b',ab and cd

c) The minimum sum-of-product expression for f are

                  a'b' +ab +c'd'+cd+a'c',\\ a'b'+ab+c'd'+cd+a'd,\\a'b'+ab+c'd'+cd+bc'  and  \\ a'b'+ab+c'd' +cd+bd

Explanation:

The explanation is shown on the second third and fourth image

8 0
3 years ago
Determine the hydraulic radius for the following rectangular open channel width =23m water depth =3m
Romashka-Z-Leto [24]

Answer:

2.379m

Explanation:

The width = 23m

The depth = 3m

The radius is denoted as R

The wetted area is = A

The perimeter perimeter = P

Hydraulic radius

R = A/P

The area of a rectangular channel

= Width multiplied by Depth

A = 23x3

A = 69m²

Perimeter = (2x3)+23

P = 6+23

P= 29

Hydraulic radius R = 69/29

= 2.379m

This answers the question

Thank you!

8 0
2 years ago
Other questions:
  • If a steel cable is rated to take 800-lb and the steel has a yield strength of 90,000psi, what is the diameter of the cable?
    12·1 answer
  • Very thin films are usually deposited under vacuum conditions to prevent contamination and ensure that atoms can fly directly fr
    14·1 answer
  • Finally you will implement the full Pegasos algorithm. You will be given the same feature matrix and labels array as you were gi
    12·1 answer
  • Technician A says that latent heat is hidden heat and cannot be measured on a thermometer. Technician B says that latent heat is
    12·1 answer
  • Air at atmospheric pressure and at 300K flows with a velocity of 1.5m/s over a flat plate. The transition from laminar to turbul
    13·1 answer
  • A reciprocating engine of 750mm stroke runs at 240 rpm. If the length of the connecting rod is 1500mm find the piston speed and
    9·1 answer
  • Please choose a specific type of stability or control surface (e.g., a canard) and explain how it is used, what it is used for,
    5·1 answer
  • A slab-milling operation is performed on a 0.7 m long, 30 mm-wide cast-iron block with a feed of 0.25 mm/tooth and depth of cut
    14·1 answer
  • Draw a sketch of the following situations identifying the system or control volume, and the boundary of the system or the contro
    10·1 answer
  • What is the difference between the elements of design and the principles of design? Define at
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!