1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
atroni [7]
3 years ago
10

A hot air balloon is used as an air-vehicle to carry passengers. It is assumed that this balloon is sealed and has a spherical s

hape. Initially, the balloon is filled up with air at the pressure and temperature of 100 kPa and 27°C respectively and the initial diameter (D) of the balloon is 10 m. Then the balloon is heated up to the point that the volume is 1.2 times greater than the original volume (V2 =1.2V1 ). Due to elastic material used in this balloon, the inside pressure ( P ) is proportional to balloonâs diameter, i.e. P = ð¼D, where ð¼ is a constant.
Required:
a. Show that the process is polytropic (i.e. PV" = Constant) and find the exponent n and the constant.
b. Find the temperature at the end of the process by assuming air to be ideal gas.
c. Find the total amount of work that is done by the balloon's boundaries and the fraction of this work that is done on the surrounding atmospheric air at the pressure of 100 kPa.
Engineering
1 answer:
monitta3 years ago
4 0

Answer:

a. \dfrac{D_{1}}{ D_{2}}  =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n} which is constant therefore, n = constant

b. The temperature at the end of the process is 109.6°C

c. The work done by the balloon boundaries = 10.81 MJ

The work done on the surrounding atmospheric air = 10.6 MJ

Explanation:

p₁ = 100 kPa

T₁ = 27°C

D₁ = 10 m

v₂ = 1.2 × v₁

p ∝ α·D

α = Constant

v_1 = \dfrac{4}{3} \times  \pi \times r^3

\therefore v_1 = \dfrac{4}{3} \times  \pi \times  \left (\dfrac{10}{2}  \right )^3 = 523.6 \ m^3

v₂ = 1.2 × v₁ = 1.2 × 523.6 = 628.32 m³

Therefore, D₂ = 10.63 m

We check the following relation for a polytropic process;

\dfrac{p_{1}}{p_{2}} = \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} = \left (\dfrac{T_{1}}{T_{2}}   \right )^{\dfrac{n}{n-1}}

We have;

\dfrac{\alpha \times D_{1}}{\alpha \times D_{2}} = \left (\dfrac{ \dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_2}{2}  \right )^3}{\dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_1}{2}  \right )^3}   \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

\dfrac{D_{1}}{ D_{2}} = \left (\dfrac{   \left{D_2}  }{ {D_1}}   \right )^{3\times n} =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n}

\dfrac{ D_{1}}{ D_{2}} = \left ( 1.2  \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

log  \left (\dfrac{D_{1}}{ D_{2}}\right )  =  -3\times n \times log\left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )

n = -1/3

Therefore, the relation, pVⁿ = Constant

b. The temperature T₂ is found as follows;

\left (\dfrac{628.32 }{523.6}   \right )^{-\dfrac{1}{3} } = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{-\dfrac{1}{3}}{-\dfrac{1}{3}-1}} = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{1}{4}}

T₂ = 300.15/0.784 = 382.75 K = 109.6°C

c. W_{pdv} = \dfrac{p_1 \times v_1 -p_2 \times v_2 }{n-1}

p_2 = \dfrac{p_{1}}{ \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} } =  \dfrac{100\times 10^3}{ \left (1.2) \right  ^{-\dfrac{1}{3} } }

p₂ =  100000/0.941 = 106.265 kPa

W_{pdv} = \dfrac{100 \times 10^3 \times 523.6 -106.265 \times 10^3  \times 628.32 }{-\dfrac{1}{3} -1} = 10806697.1433 \ J

The work done by the balloon boundaries = 10.81 MJ

Work done against atmospheric pressure, Pₐ, is given by the relation;

Pₐ × (V₂ - V₁) = 1.01×10⁵×(628.32 - 523.6) = 10576695.3 J

The work done on the surrounding atmospheric air = 10.6 MJ

You might be interested in
Provide two programming examples in which multithreading provides better performance than a single-threaded solution. Provide on
Kobotan [32]

Answer:

I dont kno

Explanation:

Im so sorry

5 0
3 years ago
In your opinion, what is the external opportunity cost of a successful biking company in a community
OleMash [197]

Answer:

The cost of increased rates of accidents/injuries due to road accidents associated with cycling.

Explanation:

Opportunity cost is referred to as an alternative cost which is the value of the other choose left out while settling for a better alternative. External cost will be the cost a society has to bear as a result of a private cost. A successful biking company in a community can led to increased rates of accidents due to road accidents associated with cycling. In addition, the society will have to bear the costs of the threats presented by dangerous car drivers who posse more danger to cyclists as compared to trucks/car drivers.

8 0
3 years ago
One of our wifi network standards is IEEE 802.11ac. It can run at 6.77 Gbit/s data rate. Calculate the symbol rate for 801.11ac
Lena [83]

Answer: Symbol rate, Fs = 0.846

Explanation:

The attachment below shows the calculations

7 0
3 years ago
A 1000 KVA three phase transformer has a secondary voltage of 208/120. What is the secondary full load amperage?
IceJOKER [234]

Answer:

The three phase full load secondary amperage is 2775.7 A

Explanation:

Following data is given,

S = Apparent Power = 1000 kVA

No. of phases = 3

Secondary Voltage: 208 V/120 V <em>(Here 208 V is three phase voltage and 120 V is single phase voltage) </em>

<em>Since,</em>

<em />

<em />V_{1ph} =\frac{ V_{3ph}}{\sqrt{3} }\\V_{1ph) = \frac{208}{\sqrt{3} }\\<em />

V_{1ph} = 120 V

The formula for apparent power in three phase system is given as:

S = \sqrt{3} VI

Where:

S = Apparent Power

V = Line Voltage

I = Line Current

In order to calculate the Current on Secondary Side, substituting values in above formula,

1000 kVA = \sqrt{3} * (208) * (I)\\1000 * 1000 = \sqrt{3} * (208) * (I)\\I = \frac{1000 * 1000}{\sqrt{3} * (208) }\\ I = 2775.7 A

 

4 0
3 years ago
Software that is released to have users test out the "bugs" is known as Ransomeware O Break-in software 2 O Flim flam software O
Sophie [7]

Answer:

Beta software

Explanation:

5 0
2 years ago
Other questions:
  • Consider a cubical furnace with a side length of 3 m. The top surface is maintained at 700 K. The base surface has emissivity of
    13·1 answer
  • Determine F12 and F21 for the following configurations: (a) A long semicircular duct with diameter of 0.1 meters: (b) A hemisphe
    10·1 answer
  • A classroom that normally contains 40 people is to be air-conditioned with window air-conditioning units of 5 kW cooling capacit
    6·1 answer
  • For a copper-silver alloy of composition 25 wt% Ag-75 wt% Cu and at 775°C (1425°F) do the following:
    15·1 answer
  • An object at a vertical elevation of 20 m and a speed of 5 m/s decreases in elevation to an elevation of 1 m. At this location,
    15·1 answer
  • A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic
    10·1 answer
  • When an emergency vehicle approaches you from in front or behind you, what should you do?
    14·1 answer
  • The line touching the circle at a point ....................... is known as ........................... .
    12·1 answer
  • Name the four ways in which heat is transferred from a diesel engine
    7·1 answer
  • Should i show my face?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!