Answer:
a) V = 0.354
b) G = 25.34 GPA
Explanation:
Solution:
We first determine Modulus of Elasticity and Modulus of rigidity
Elongation of rod ΔL = 1.4 mm
Normal stress, δ = P/A
Where P = Force acting on the cross-section
A = Area of the cross-section
Using Area, A = π/4 · d²
= π/4 · (0.0020)² = 3.14 × 10⁻⁴m²
δ = 50/3.14 × 10⁻⁴ = 159.155 MPA
E(long) = Δl/l = 1.4/600 = 2.33 × 10⁻³mm/mm
Modulus of Elasticity Е = δ/ε
= 159.155 × 10⁶/2.33 × 10⁻³ = 68.306 GPA
Also final diameter d(f) = 19.9837 mm
Initial diameter d(i) = 20 mm
Poisson said that V = Е(elasticity)/Е(long)
= - <u>( 19.9837 - 20 /20)</u>
2.33 × 10⁻³
= 0.354,
∴ v = 0.354
Also G = Е/2. (1+V)
= 68.306 × 10⁹/ 2.(1+ 0.354)
= 25.34 GPA
⇒ G = 25.34 GPA
Answer with Explanation:
Part a)
The volume of water in the tank as a function of time is plotted in the below attached figure.
The vertical intercept of the graph is 46.
Part b)
The vertical intercept represents the volume of water that is initially present in the tank before draining begins.
Part c)
To find the time required to completely drain the tank we calculate the volume of the water in the tank to zero.

Part d)
The horizontal intercept represents the time it takes to empty the tank which as calculated above is 13.143 minutes.
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.