Answer:
vB = - 0.176 m/s (↓-)
Explanation:
Given
(AB) = 0.75 m
(AB)' = 0.2 m/s
vA = 0.6 m/s
θ = 35°
vB = ?
We use the formulas
Sin θ = Sin 35° = (OA)/(AB) ⇒ (OA) = Sin 35°*(AB)
⇒ (OA) = Sin 35°*(0.75 m) = 0.43 m
Cos θ = Cos 35° = (OB)/(AB) ⇒ (OB) = Cos 35°*(AB)
⇒ (OB) = Cos 35°*(0.75 m) = 0.614 m
We apply Pythagoras' theorem as follows
(AB)² = (OA)² + (OB)²
We derive the equation
2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB
⇒ (AB)*(AB)' = (OA)*vA + (OB)*vB
⇒ vB = ((AB)*(AB)' - (OA)*vA) / (OB)
then we have
⇒ vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)
⇒ vB = - 0.176 m/s (↓-)
The pic can show the question.
Answer:
If Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.
Explanation:
Reynolds number is an important dimensionless parameter in fluid mechanics.
It is calculated as;

where;
ρ is density
v is velocity
d is diameter
μ is viscosity
All these parameters are important in calculating Reynolds number and understanding of fluid flow over an object.
In aerodynamics, the higher the Reynolds number, the lesser the viscosity plays a role in the flow around the airfoil. As Reynolds number increases, the boundary layer gets thinner, which results in a lower drag. Or simply put, if Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.
Answer:
The atmospheric pressure in atm=0.885 atm
Explanation:
Given that
Local pressure (h)= 30 ft of water height ( 1 ft= 0.3048 m)
We know that pressure in given by
P=ρgh
We know that ρ of water is 1000
So pressure
P=1000(9.81)(9.144)
We know that 1000 Pa=0.00986 atm
So P=0.885 atm
The atmospheric pressure in atm=0.885 atm
Answer:
Explanation:
First we compute the characteristic length and the Biot number to see if the lumped parameter
analysis is applicable.
Since the Biot number is less than 0.1, we can use the lumped parameter analysis. In such an
analysis, the time to reach a certain temperature is given by the following
From the data in the problem we can compute the parameter, b, and then compute the time for
the ratio (T – T)/(Ti
– T)