Answer:
E = 2.85×10⁻¹⁹ J
Explanation:
Given data:
Wavelength of light = 700 nm
Frequency of light = 4.3×10¹⁴ s⁻¹
What is the energy of light = ?
Solution:
Formula:
E = h × f
h = plancks constant = 6.63×10⁻³⁴ Js
by putting values,
E = 6.63×10⁻³⁴ Js × 4.3×10¹⁴ s⁻¹
E = 28.5×10⁻²⁰ J
E = 2.85×10⁻¹⁹ J
Answer:
Explanation:
Ionization energy:
It is the minimum amount of energy required to remove the electron from isolated gaseous atom to make the ion.
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell.
When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required. Where as,
When we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
I think what '13C' means is the isotope of carbon with mass number of 13. Its mass is 13 amu. The unit amu is equivalent to g/mol. The average atomic mass of Carbon is actually 12. But since we are solving for this particular isotope, we use a molar mass of 13 g/mol.
2 g C-13 * 1 mol/13 g = 0.154 moles of C-13
the pencil models are much bigger
<span>Enthalpy is regarding the amount of heat that is given off or taken in during the process of a reaction, while entropy is about the disorderliness of a reaction.
Both are related in the equation ∆G=∆H-T∆S, where ∆G is the Gibbs free energy. So we can say that a reaction is both enthalpy and entropy driven. It's like, both of them are interlinked with each other. </span>