This claim isn’t true. This claim is trying to say that once force is being applied to Newton’s Cradle then it will forever stay in motion. However, from the excerpt we learn that this isn’t possible. As one of the balls are pushed, it is set into kinetic energy, and then that ball will hit another and send it into kinetic energy as well. However, not all of the kinetic energy is kept through this process, some of the energy is lost and converted into different forms such as sound energy. Therefore, it isn’t possible for Newton’s Cradle to stay in motion forever.
Answer: Scientists observe natural events occuring around them. If a hypothesis is not veriffied by the results from the scientific method, scientists may redo the process or create a new hypothesis
Explanation:
Answer:
Explanation:
The bead is moving on a vertical circular path so it must have a centripetal force towards the centre.
This force is equal to m v² / r
v is velocity of bead and r is radius of the circular path.
The vertical hoop is also rotating about a vertical axis passing through the centre at frequency f so the bead will experience a cetrifugal force due to rotation of the hoop. Its value is
m ω² r . Only at the point o degree and 180 degree , these forces are opposite to each other so at these points , the bead will be in equilibrium .
mv² / r = m ω² r
v² = ω² r²
v = ω r
= 2π f r
= 2 x 3.14 x 2 x 0.22
v = 2.76 m /s
For the bead to rise upto point θ = 90 degree , height achieved is radius R
required velocity = √ 2gR
= √ 2x 9.8x.22
= 2.076 m/s
This velocity is less than the velocity calculated earlier so the bead will be able to ride the required height.
v = 2.76 m/s
Answer:
There are actually three, Kepler's laws that is, of planetary motion: 1) every planet's orbit is an ellipse with the Sun at a focus; 2) a line joining the Sun and a planet sweeps out equal areas in equal times; and 3) the square of a planet's orbital period is proportional to the cube of the semi-major axis of its
Answer:
graph A
Explanation:
the slope of the distance-time graph is speed, speed is a scalar (with magnitudes but no direction)
but the slope for the velocity time graph is acceleration, acceleration is vector quantity ( has magnitude and direction)