Answer:
True
Explanation:
Yes absolutely the food which provede us energy is termed as healthy..
Answer: The correct answer is "metalloid".
Explanation:
Metal is the material which can conduct electricity as it contains free electrons. It is good conductor of electricity. For example, copper, silver.
Metal can be drawn into wires. This property of material is called ductile.
Metal can be beaten into sheets. This property of material is called malleable.
Non metal is the material which cannot conduct electricity as it does not contain free electrons. They are poor conductor of electricity. For example, oxygen.
Metalloid: It has properties of both metals and non metal. It is electrical conductor. For example, semiconductor- silicon and germanium. But they cannot be pulled into wires.
Therefore, a material you are testing conducts electricity but cannot be pulled into wires. It is most likely a metalloid.
Answer:
1.) U = 39.2 m/s
2.) t = 4s
Explanation: Given that the
height H = 78.4m
The projectile is fired vertically upwards under the acceleration due to gravity g = 9.8 m/s^2
Let's assume that the maximum height = 78.4m. And at maximum height, final velocity V = 0
Velocity of projections can be achieved by using the formula
V^2 = U^2 - 2gH
g will be negative as the object is moving against the gravity
0 = U^2 - 2 × 9.8 × 78.4
U^2 = 1536.64
U = sqrt( 1536.64 )
U = 39.2 m/s
The time it takes to reach its highest point can be calculated by using the formula;
V = U - gt
Where V = 0
Substitute U and t into the formula
0 = 39.2 - 9.8 × t
9.8t = 39.2
t = 39.2/9.8
t = 4 seconds.
Answer: 24.7 km/h
Explanation:
1) Average speed definition and formula
The average speed is the total distance run divided by the time elapsed:
S = distance / time
2) Distance 1 = 67 km
3) Distance 2 = 81 km
4) Total distance traveled = 67 km + 81 km = 148 km
5) time 1 = 1 hour
6) time 2 = 5 hours
7) total time = time 1 + time 2 = 1 h + 5 h = 6 h
8) Average speed:
S = 148 km / 6 h = 24.7 km/h
Answer:
the answer is b
Explanation:
Second and third class levers are differentiated by <u>the location of the </u><u>load.</u>
<em>Hope</em><em> </em><em>this</em><em> </em><em>help</em><em> </em><em>you</em><em> </em><em>out </em><em>and have</em><em> </em><em>a </em><em>nice</em><em> </em><em>day </em><em>=</em><em>)</em>