Answer:
1.38*10^18 kg
Explanation:
According to the Newton's law of universal gravitation:

where:
G= Gravitational constant (6.674×10−11 N · (m/kg)2)
ma= mass of the astronaut
mp= mass of the planet

so:

Answer: <u>In a divergent plate boundary</u>, seafloor spreading taking place. It leads to the formation of oceans as new materials are added here along the mid-oceanic ridge. There occur volcanism and shallow-focus earthquakes.
<u>In a convergent plate boundary</u>, two plates collide to form high mountain belts and also volcanic eruptions take place. There occur long chains of volcanic as well as island arcs, in association with deep-focus earthquakes.
<u>In a transform plate boundary</u>, two plates slide past each other, conserving the plates. Shallow-focus earthquakes are generated here.
The earth has experienced various geological processes, such as weathering and erosion of rocks, earthquakes, volcanic eruptions, mass extinction events, plate tectonic movements and many more. These continuous processes have configured the present shape of the earth's surface.
For example, the breaking up of the supercontinent Pangea divided into Laurasia and Gondwanaland and subsequently formed the present scenario. This separation of continents has taken place due to the convection current that generates in the mantle.
If both waves have the same wavelength, then the amplitude of
their sum could be anything between 1 cm and 9 cm, depending
on the phase angle between them.
If the waves have different wavelengths, then the resultant is a beat
with an amplitude of 9 cm.
Using conservation of energy and momentum we get m1*v1=(m1+m2)*v2 so rearranging for v2 and plugging the given values in we get:
(200000kg*1.00m/s)/(21000kg)=.952m/s
The answer would be solubility