Answer:
15
Explanation:
I got it right I just had the answer
Explanation:
The problem here is to find the atomic number of each of the element given.
Sum the powers of the configuration.
a- 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹
Atomic number is = 2 + 2 + 6 + 2 + 6 + 1 = 19
b- 1s² 2s² 2p⁶ 3s² 3p⁴
Atomic number = 2 + 2 + 6 + 2 + 4 = 16
c- 1s¹
Atomic number = 1
Answer:
En lugar de utilizar las ya conocidas unidades de concentración, para la solubilidad es más común emplear la siguiente: Medimos la solubilidad como la cantidad de gramos del soluto que podemos disolver en 100 gramos de disolvente.
Explanation:
Answer:
We don't have the passage. A random sampling of surfactant uses includes:
- removal of oily materials from objects (clothes and dishes)
- forms remarkable structures called bubbles
- Assists in forming emulsions (e.g., mayonaise and paints)
Explanation:
The structure of a surfactant makes one end of a molecule hydrophilic and the other end hydrophobic. In water, they self-assemble into micelles, an arrangement in which the hydrophobic ends align towards the center, and the hydrophilic ends are pointed outwards to the water. This self-assembly is apparant when bubbles are made. The molecules quickly align themselves such that the hyrophilic ends are oriented inwards towards a thin layer of water and the hydrophobic ends are pointed outward to the air. This arrangement allows a mono-molecular sphere of water molecules to remain stable enough to float, reflect light, and please. These same properties allow the inverse to occur. Soap molecules surround a hydrophobic mass (e.g., the hamburger grease on your shirt) and solubilize it into small micelles which are then carried away in the surrounding water.
Answer:
None of the given options
Explanation:
Let's go case by case:
A. No matter the volume, the concentration of Fe(NO₃)₃ (and thus of [Fe³⁺] as well) is 0.050 M.
B. We can calculate the moles of Fe₂(SO₄)₃:
- 0.020 M * 0.80 L = 0.016 mol Fe₂(SO₄)₃
Given that there are two Fe⁺³ moles per Fe₂(SO₄)₃ mol, in the solution we have 0.032 moles of Fe⁺³. With that information in mind we <u>can calculate [Fe⁺³]</u>:
- 0.032 mol Fe⁺³ / 0.80 L = 0.040 M
C. Analog to case A., the molar concentration of Fe⁺³ is 0.040 M.
D. Similar to cases A and C., [Fe⁺³] = 0.010 M.
Thus none of the given options would have [Fe⁺³] = 0.020 M.