Answer:
Volume of sample after droping into the ocean=0.0234L
Explanation:
As given in the question that gas is idealso we can use ideal gas equation to solve this;
Assuming that temperature is constant;
Lets
and
are the initial gas parameter before dropping into the ocean
and
and
are the final gas parameter after dropping into the ocean
according to boyle 's law pressure is inversly proportional to the volume at constant temperature.
hence,

P1=1 atm
V1=1.87L
P2=80atm
V2=?
After putting all values we get;
V2=0.0234L
Volume of sample after droping into the ocean=0.0234L
Use the equation for density :
Density = mass / volume
Density = 120 / 480
Density = 0.25
The statement which describes how NO2- reacts in this equilibrium:
<span>H2SO3(aq) + NO2-(aq) HSO3-(aq) + HNO2(aq
is the second option - </span><span>B. as a Brønsted-Lowry base by accepting a proton.
</span>This is because bases take proton H+ in order to become HNO2.
Answer: 581 gmol
0.581 kmol

Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1. The conversion for mol to gmol
1 mol = 1 gmol
581 mol= 
2. The conversion for mol to kmol
1 mol = 0.001 kmol
581 mol= 
3. The conversion for mol to lbmol
1 mol = 
581 mol= 
The molarity of the hydrogen peroxide solution from the information supplied in the question is 12.26 M.
Co = 10pd/M
Where;
Co = concentration = ?
p = percent of the hydrogen peroxide = 30%
d = Density of hydrogen peroxide = 1.39 g/ml
M = Molar mass = 34 g/mol
Substituting values;
Co = 10 × 30 × 1.39/34
Co = 12.26 M
The molarity of the hydrogen peroxide solution from the information supplied in the question is 12.26 M.
Learn more: brainly.com/question/6111443