Yeah, a lot faster than sound.
Other commonly used units include g/L (grams of solute per liter of solution) and m/L (moles of solute per liter of solution). Solubility units always express the maximum amount of solute that will dissolve in either a given amount of solvent, or a given amount of solution, at a specific temperature.
The answer:
all that we search for is the number of mole of HCl and the number of mole of C2H6O
M(HCl) = 5.5g/ mole of HCl , so mole of HCl = 5.5/M(HCl), where M(HCl) is the molar mass.
M(HCl) = 1+ 36.5= 37.5
moles of HCl = 5.5/37.5=0.14
M(C2H6O) = 200g / moles of C2H6O, so moles of C2H6O=200g / M(C2H6O)
M(C2H6O)= 2x12+ 6 + 16=46,
moles of C2H6O=200g / 46 =<span>4.35 </span><span> moles
</span>
the sum of the moles is 0.14 + <span>4.35 </span> = 4.501 moles
finally, <span>The mole fraction of hcl in a solution prepared by dissolving 5.5 g of hcl in 200 g of c2h6o is 0.031
</span>
because it can be found by 0.14 / 4.501= 0.031
c. Isoleucine has a carbon “branched” closer to the alpha carbon than does leucine.
The structure of leucine is CH3CH(<u>CH3</u>)CH2CH(NH2)COOH.
The structure of isoleucine is CH3CH2CH(<u>CH3</u>)CH(NH2)COOH.
In leucine, the CH3 group is <em>two carbons away</em> <em>from</em> the α carbon; in isoleucine, the CH3 group is on the carbon <em>next to</em> the α carbon.
Thus, <em>isoleucine</em> has the closer branched carbon.
“One is charged, the other is not” is i<em>ncorrect</em>. Both compounds are uncharged.
“One has more H-bond acceptors than the other” is <em>incorrect</em>. Each acid has two H-bond acceptors — the N in the amino and the O in the carbonyl group.
“They have different numbers of carbon atoms” is <em>incorrec</em>t. They each contain six carbon atoms.
Answer:
<em>When molecular hydrogen (H2) and oxygen (O2) are combined and allowed to react together, energy is released and the molecules of hydrogen and oxygen can combine to form either water or hydrogen peroxide.</em>