Answer:
- Last choice: <em><u>- 3.72°C</u></em>
Explanation:
The freezing point depression in a solvent is a colligative property: it depends on the number of solute particles.
The equation to predict the freezing point depression in a solvent is:
Where,
- ΔTf is the freezing point depression of the solvent,
- Kf is the cryoscopic molal constant of the solvent, and i is the Van'f Hoff factor, which is the number of ions produced by each unit formula of the ionic compound.
The calcualtions are in the attached pdf file. Please, open it by clicking on the image of the file.
Base+salt > acid +alkali > neutralization i think this is the reaction
Answer:
This process naturally occurs in the environment, where it is carried out by specialized bacteria.
Explanation:
Answer:
2.25×10¯³ mm.
Explanation:
From the question given above, we obtained the following information:
Diameter in micrometer = 2.25 μm
Diameter in millimetre (mm) =?
Next we shall convert 2.25 μm to metre (m). This can be obtained as follow:
1 μm = 1×10¯⁶ m
Therefore,
2.25 μm = 2.25 μm / 1 μm × 1×10¯⁶ m
2.25 μm = 2.25×10¯⁶ m
Finally, we shall convert 2.25×10¯⁶ m to millimetre (mm) as follow:
1 m = 1000 mm
Therefore,
2.25×10¯⁶ m = 2.25×10¯⁶ m /1 m × 1000 mm
2.25×10¯⁶ m = 2.25×10¯³ mm
Therefore, 2.25 μm is equivalent to 2.25×10¯³ mm.
Answer:
The answer is
<h3>2.53 × 10²⁴ molecules</h3>
Explanation:
The number of molecules present can be found by using the formula
<h3>N = n × L</h3>
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 4.21 × 6.02 × 10²³
We have the final answer as
<h3>2.53 × 10²⁴ molecules</h3>
Hope this helps you