Answer:
1. They generally have poorer fuel efficiency and require more resources to manufacture than smaller vehicles, thus contributing more to climate change and environmental degradation. Their higher center of gravity increases their risk of rollovers.
2. Mid-sized cars and SUVs both have a fixed object fatality rate of 2.6/BVM. This is most likely because they have a similar mass and inertia. The force of the crash is likely to have about the same deceleration in both vehicles.
Explanation:
brainliest please
Answer:
It would be 2600
Explanation:
M/S stands for meters per second. If it moved 1 meter for 2600 seconds, than it would be 2600. You just multiply 2600 by 1! I hope this helps :D
Answer:
m=146.277kg which is rounded to 146kg
Explanation:
Remember that F=ma
But F represents not 250N, but 250cos(35)N since the force is being pulled above the horizontal.
So 250cos(35)=204.7880111 approximately, and since a=1.4m/s^2, we have 204.7880111=m(1.4m/s^2). Then we divide both sides by the acceleration to get the mass. So m=146.2771508kg which the nearest number is 146kg
Mass is always in kg, unless stated otherwise.
Answer:
1.02 m/s²
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
Acceleration can simply be defined as the change of velocity with time. Mathematically, it can be expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
a = (v – u) / t
a = (6.6 – 0) / 6.5
a = 6.6 / 6.5
a = 1.02 m/s²
Therefore, the acceleration of the car is 1.02 m/s²