1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alekssr [168]
3 years ago
14

What type of plate boundary decreases the amount of the Earth's crust?

Physics
1 answer:
rosijanka [135]3 years ago
3 0

Answer:

Convergent.

Explanation:

Just as oceanic crust is formed at mid-ocean ridges, it is destroyed in subduction zones. Subduction is the important geologic process in which a tectonic plate made of dense lithospheric material melts or falls below a plate made of less-dense lithosphere at a convergent plate boundary.

You might be interested in
A
ale4655 [162]

m = 43.2 kg

Explanation:

volume of sphere = (4/3)pi(r)^3

= (4/3)(3.14)(2 m)^3

= 33.5 m^3

density = mass/volume

or solving for mass m,

m = (density)×(volume)

= (1.29 kg/m^3)(33.5 m^3)

= 43.2 kg

3 0
3 years ago
A simple pendulum bhas a period of 3.45s when the length of the pendulum is shortened by 1m the period is 2.81s caculate the ori
Bond [772]
Chloe?????????????.......
7 0
3 years ago
You are sitting on a merry-go-round of mass 200 kg and radius 2m that is at rest (not spinning). Your mass is 50 kg. Your friend
Bogdan [553]

Answer:

a.\tau=200J b.\alpha=0.44 \frac{rad}{s^2} c. \alpha=0.33\frac{rad}{s^2} d. The angular acceleration when sitting in the middle is larger.

Explanation:

a. The magnitude of the torque is given by \tau=rF\sin \theta, being r the radius, F the force aplied and \theta the angle between the vector force and the vector radius. Since \theta=90^{\circ}, \, \sin\theta=1 and so \tau=rF=2m100N=200Nm=200J.

b. Since the relation \tau=I\alpha hols, being I the moment of inertia, the angular acceleration can be calculated by \alpha=\frac{\tau}{I}. Since we have already calculated the torque, all left is calculate the moment of inertia. The moment of inertia of a solid disk rotating about an axis that passes through its center is I=\frac{1}{2}Mr^2, being M the mass of the disk. If we assume that a person has a punctual mass, the moment of inertia of a person would be given by I_p=m_pr_p^{2}, being m_p the mass of the person and r_p^{2} the distance from the person to the center. Given all of this, we have

\alpha=\frac{\tau}{I}=\frac{\tau}{I_{disk}+I_{person}}=\frac{Fr}{\frac{1}{2}Mr^2+m_pr_p^{2}}=\frac{200Nm}{\frac{1}{2}200kg*4m^2+50kg*1m^2}=\frac{200\frac{kgm^2}{s^2}}{450Nm^2}\approx 0.44\frac{rad}{s^2}.

c. Similar equation to b, but changing r_p=2m, so

alpha=\dfrac{200\frac{kgm^2}{s^2}}{\frac{1}{2}200*4kg\,m^2+50*4 kg\,m^2}=\dfrac{200}{600}\dfrac{1}{s^2}\approx 0.33 \frac{rad}{s^2}.

d. The angular acceleration when sitting in the middle is larger because the moment of inertia of the person is smaller, meaning that the person has less inertia to rotate.

5 0
3 years ago
What is the change in potential energy if the distance separating the electron and proton is increased to 1.0 nm?
Vlada [557]

Answer:

Ep=-2.3*10^{-19}J

Explanation:

The change in potential energy can be expressed as:

Ep=K.\frac{q1.q2}{r}

where K is a constant with a value of 9*10^{9}\frac{N.m^{2}}{C^{2}}, q1 and q2 are the charges of the proton and the electron and r is the distance between them.

The charge for the proton is +1.6*10^{-19}C and the charge for the electron is -1.6*10^{-19}C.

Converting r=1.0nm to m:

1.0nm*\frac{1*10^{-9}m}{1.0nm}=1*10^{-9}m

Replacing values:

Ep=9*10^{9}\frac{N.m^{2}}{C^{2}}.\frac{(+1.6*10^{-19}C).(-1.6*10^{-19}C)}{1*10^{-9}m}

Ep=-2.3*10^{-19}J

5 0
3 years ago
In a race, Usain Bolt accelerates at
jeka94

Answer:

65.87 s

Explanation:

For the first time,

Applying

v² = u²+2as.............. Equation 1

Where v = final velocity, u = initial velocity, a = acceleration, s = distance

From the question,

Given:  u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m

Substitute these values into equation 1

v² = 0²+2(1.99)(60)

v² = 238.8

v = √238.8

v = 15.45 m/s

Therefore, time taken for the first 60 m is

t = (v-u)/a............ Equation 2

t = (15.45-0)/1.99

t = 7.77 s

For the final 40 meter,

t = (v-u)/a

Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²

Substitute into the equation above

t = (0-15.45)/-0.266

t = 58.1 seconds

Hence total time taken to cover the distance

T = 7.77+58.1

T = 65.87 s

3 0
3 years ago
Other questions:
  • What is the ultimate source of energy that makes the Sun shine?
    7·1 answer
  • When in orbit, a satellite such as the space shuttle is
    12·2 answers
  • To get the whole circle, you run t from 0 to 2 π. Use this information to confirm that the circumference of a circle of radius r
    7·1 answer
  • How do stop watches measure to get the accurate measurement?
    14·1 answer
  • In a fusion reaction, the nuclei of two atoms join to form a single atom of a different element. In such a reaction, a fraction
    5·1 answer
  • what is the resistance of a light bulb if a potential difference of 120 v will produce a current of 0.5 a in the bulb? 0.0042 0.
    10·2 answers
  • I need help pls now ​plleeeeeeeeaaassseeeee
    6·1 answer
  • Light incident on a surface at an angle of 45° undergoes diffused reflection at what angle will it reflect?
    12·1 answer
  • A student sits on a pivoted stool while holding a pair of weights. The stool is free to rotate about a vertical axis with neglig
    15·1 answer
  • Roughly how many stars are in the Milky Way Galaxy?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!