Answer:
8.31 × 10⁻²² kJ
Explanation:
Step 1: Given data
Energy required to remove one mole of electrons from the atoms at the surface of a solid metal: 500 kJ/mol e⁻
Step 2: Calculate how much energy does it take to remove a single electron from an atom at the surface of this solid metal
We will use Avogadro's number: there are 6.02 × 10²³ electrons in 1 mole of electrons.
500 kJ/mol e⁻ × 1 mol e⁻/6.02 × 10²³ e⁻ = 8.31 × 10⁻²² kJ/e⁻
I believe they are converted to energy
<h2>Answer:</h2>
<u>The right option is</u><u> (C) intermediate conductivity and a high melting point</u>
<h2>Explanation:</h2>
Metalloids usually look like metals but behave largely like nonmetals. Metalloids are shiny, brittle solids with intermediate good electrical conductivity. Their properties lie between metals and non metals. All metalloids exist as solids at room temperature and they have very high melting points. The physical properties of metalloids are more likely to be metallic, but their chemical properties tend to be non-metallic
I need more characters but it is b
The formula of work is Work (Joules)=Force (Newtons) · distance in the direction of the force (meters), therefore its just a matter of replacing factors.
Work done = 12 · 4.5= 54 joules