Answer:
The answer to your question is:
Explanation:
Data
carbon 7.3% = 7.3g
hydrogen 4.5% = 4.5g
oxygen 36.4% = 36.4 g
nitrogen 31.8% = 31.8 g
Now
For carbon
12 g --------------------1 mol
7.3 g ------------- x
x = 7.3/12 = 0.608 mol
For hydrogen
1 g -------------------- 1 mol
4.5 g ------------------ x
x = 4.5 mol
For oxygen
16 g ------------------- 1 mol
36.4 g ---------------- x
x = 2.28 mol
For nitrogen
14 g ---------------- 1 mol
31.8 g --------------- x
x = 2.27 mol
Now divide by the lowest result, the is 0.608 from carbon
carbon 0.608/0.608 = 1
hydrogen 4.5/ 0.608 = 7.4
oxygen 2.28/0.608 = 3.75
nitrogen 2.27/0.608 = 3.73
Empirical formula = CH₇O₄N₄
Answer:
climate ,soils,nature of the surface and man
I believe it is 6ml because you do the doseage times the ml and mutiply it by 1
Answer:
The amount of energy released from the combustion of 2 moles of methae is 1,605.08 kJ/mol
Explanation:
The chemical reaction of the combustion of methane is given as follows;
CH₄ (g) + 2O₂ (g) → CO₂ (g) + 2H₂O (g)
Hence, 1 mole of methane combines with 2 moles of oxygen gas to form 1 mole of carbon dioxide and 2 moles of water vapor
Where:
CH₄ (g): Hf = -74.6 kJ/mol
CO₂ (g): Hf = -393.5 kJ/mol
H₂O (g): Hf = -241.82 kJ/mol
Therefore, the combustion of 1 mole of methane releases;
-393.5 kJ/mol × 1 + 241.82 kJ/mol × 2 + 74.6 kJ/mol = -802.54 kJ/mol
Hence the combustion of 2 moles of methae will rellease;
2 × -802.54 kJ/mol or 1,605.08 kJ/mol.
The correct answer from the choices given is the third option. Covalent compounds have low boiling points. Also, their melting points are low. Covalent bonds have relatively low attractions which results to these properties. The bonds are easily broken by taking energy or adding energy.