Answer:
true im pretttyyy sure
Explanation:
bcuz the stronger the intermolecular forces the higher the boiling point :3
Answer: 1.87 atm
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 2.50 atm
= final pressure of gas = ?
= initial volume of gas = 26.4 ml
= final volume of gas = 36.2 ml
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


The new pressure is 1.87 atm by using combined gas law.
Answer:
Heterogeneous mixture
Explanation:
A homogeneous mixture is defined as a mixture in which the constituents of the mixture are uniformly distributed. A typical example of a homogeneous mixture is when a salt is dissolved in water.
A heterogeneous mixture refers to a kind of mixture whereby the composition of the mixture is not uniform. A typically example of a heterogeneous mixture is non-homogenized milk.
Since non-homogenized milk is not homogeneous, the cream rises to the top and separates from the rest of the mixture because the emulsion has not been stabilized. However, homogenized milk is just milk whose emulsion has been stabilized the cream does not separate when left to stand.
Answer:
Option E!
Explanation:
If we were to draw the lewis dot structure for IBr2 -, we would first count the total number of valence electrons ( " available electrons " ). Iodine has 7 valence electrons, and so does Bromine, but as Bromine exists in 2, the total number of valence electrons would be demonstrated below;

Don't forget the negative on the Bromine!
Now go through the procedure below;
1 ) Place Iodine in the middle and draw single bonds to each of the bromine.
2 ) Add three lone pairs on each of the Bromine's
3 ) Now we have 6 electrons left, if we were to exclude the electrons shared in the " single bonds. " This can be placed as three lone pairs on Iodine ( central atom )!
The molecular geometry can't be linear, as there are lone pairs on the atoms. This makes it bent.