Uh , what’s the question ?
If there is some reason you cannot get the compound from a natural source, it may be helpful to use a synthetic, yet identical, version. If harvesting the item from nature is too expensive or over-harvesting could damage the environment or destroy habitat, it might be better to synthesize the compound.
The number of grams of Ag2SO4 that could be formed is 31.8 grams
<u><em> calculation</em></u>
Balanced equation is as below
2 AgNO3 (aq) + H2SO4(aq) → Ag2SO4 (s) +2 HNO3 (aq)
- Find the moles of each reactant by use of mole= mass/molar mass formula
that is moles of AgNO3= 34.7 g / 169.87 g/mol= 0.204 moles
moles of H2SO4 = 28.6 g/98 g/mol =0.292 moles
- use the mole ratio to determine the moles of Ag2SO4
that is;
- the mole ratio of AgNo3 : Ag2SO4 is 2:1 therefore the moles of Ag2SO4= 0.204 x1/2=0.102 moles
- The moles ratio of H2SO4 : Ag2SO4 is 1:1 therefore the moles of Ag2SO4 = 0.292 moles
- AgNO3 is the limiting reagent therefore the moles of Ag2SO4 = 0.102 moles
<h3> finally find the mass of Ag2SO4 by use of mass=mole x molar mass formula</h3>
that is 0.102 moles x 311.8 g/mol= 31.8 grams
Answer:
coal
Explanation:
fossil fuels are formed by natural process.
Atomic number and the number of protons are the same...
Neutrons = Mass number - number of protons
Electrons are same # unless there is a charge
The whole number you see on the periodic table is the atomic number of the element which is also same as the number of protons
1) carbon - 14 ; Mass number = 14 , Protons = 6 , Neutrons = 14 - 6 = 8
Electrons = 6
2) Lead - 208 ; Mass # = 208 , Protons = 82 , Neutrons = 208 - 82 = 126
Electrons = 82
3) Uranium - 239 ; Mass # = 239 , Protons = 92,Neutrons = 239 - 92 = 147
Electrons = 92
4) Uranium - 238 ; Mass # = 238 , Protons = 92 , Neutrons = 238 - 92 = 146
Electrons = 92
5) Tin - 118 ; Mass # = 118 , Protons = 50 , Neutrons = 118 - 50 = 68
Electrons = 50