1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
3 years ago
15

What type of telescope is shown in Figure 24-2

Physics
2 answers:
lesantik [10]3 years ago
7 0
Refractor, It's a refractor-esque telescope
djyliett [7]3 years ago
4 0
It's a refractor telescope 
You might be interested in
An above ground swimming pool of 30 ft diameter and 5 ft depth is to be filled from a garden hose (smooth interior) of length 10
STALIN [3.7K]

This question involves the concepts of dynamic pressure, volume flow rate, and flow speed.

It will take "5.1 hours" to fill the pool.

First, we will use the formula for the dynamic pressure to find out the flow speed of water:

P=\frac{1}{2}\rho v^2\\\\v=\sqrt{\frac{2P}{\rho}}

where,

v = flow speed = ?

P = Dynamic Pressure = 55 psi(\frac{6894.76\ Pa}{1\ psi}) = 379212 Pa

\rho = density of water = 1000 kg/m³

Therefore,

v=\sqrt{\frac{2(379212\ Pa)}{1000\ kg/m^3}}

v = 27.54 m/s

Now, we will use the formula for volume flow rate of water coming from the hose to find out the time taken by the pool to be filled:

\frac{V}{t} = Av\\\\t =\frac{V}{Av}

where,

t = time to fill the pool = ?

A = Area of the mouth of hose = \frac{\pi (0.015875\ m)^2}{4} = 1.98 x 10⁻⁴ m²

V = Volume of the pool = (Area of pool)(depth of pool) = A(1.524 m)

V = [\frac{\pi (9.144\ m)^2}{4}][1.524\ m] = 100.1 m³

Therefore,

t = \frac{(100.1\ m^3)}{(1.98\ x\ 10^{-4}\ m^2)(27.54\ m/s)}\\\\

<u>t = 18353.5 s = 305.9 min = 5.1 hours</u>

Learn more about dynamic pressure here:

brainly.com/question/13155610?referrer=searchResults

7 0
2 years ago
Why can't i tell my crush how i feel
fomenos
You can, just tell them
6 0
3 years ago
Read 2 more answers
What type of image can a convex mirror produce?
user100 [1]

It must be a virtual image, because this is the only kind of image it can produce.

4 0
3 years ago
A satellite is in a circular orbit around Mars, which has a mass M = 6.40 × 1023 kg and radius R = 3.40 ×106 m.
Pepsi [2]

Answer:

a) The orbital speed of a satellite with a orbital radius R (in meters) will have an orbital speed of approximately \displaystyle \sqrt\frac{4.27 \times 10^{13}}{R}\; \rm m \cdot s^{-1}.

b) Again, if the orbital radius R is in meters, the orbital period of the satellite would be approximately \displaystyle 9.62 \times 10^{-7}\, R^{3/2}\; \rm s.

c) The orbital radius required would be approximately \rm 2.04 \times 10^7\; m.

d) The escape velocity from the surface of that planet would be approximately \rm 5.01\times 10^3\; m \cdot s^{-1}.

Explanation:

<h3>a)</h3>

Since the orbit of this satellite is circular, it is undergoing a centripetal motion. The planet's gravitational attraction on the satellite would supply this centripetal force.

The magnitude of gravity between two point or spherical mass is equal to:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}},

where

  • G is the constant of universal gravitation.
  • M is the mass of the first mass. (In this case, let M be the mass of the planet.)
  • m is the mass of the second mass. (In this case, let m be the mass of the satellite.)  
  • r is the distance between the center of mass of these two objects.

On the other hand, the net force on an object in a centripetal motion should be:

\displaystyle \frac{m \cdot v^{2}}{r},

where

  • m is the mass of the object (in this case, that's the mass of the satellite.)
  • v is the orbital speed of the satellite.
  • r is the radius of the circular orbit.

Assume that gravitational force is the only force on the satellite. The net force should be equal to the planet's gravitational attraction on the satellite. Equate the two expressions and solve for v:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}} = \frac{m \cdot v^{2}}{r}.

\displaystyle v^2 = \frac{G \cdot M}{r}.

\displaystyle v = \sqrt{\frac{G \cdot M}{r}}.

Take G \approx 6.67 \times \rm 10^{-11} \; m^3 \cdot kg^{-1} \cdot s^{-2},  Simplify the expression v:

\begin{aligned} v &= \sqrt{\frac{G \cdot M}{r}} \cr &= \sqrt{\frac{6.67 \times \rm 10^{-11} \times 6.40 \times 10^{23}}{r}} \cr &\approx \sqrt{\frac{4.27 \times 10^{13}}{r}} \; \rm m \cdot s^{-1} \end{aligned}.

<h3>b)</h3>

Since the orbit is a circle of radius R, the distance traveled in one period would be equal to the circumference of that circle, 2 \pi R.

Divide distance with speed to find the time required.

\begin{aligned} t &= \frac{s}{v} \cr &= 2 \pi R}\left/\sqrt{\frac{G \cdot M}{R}} \; \rm m \cdot s^{-1}\right. \cr &= \frac{2\pi R^{3/2}}{\sqrt{G \cdot M}} \cr &\approx  9.62 \times 10^{-7}\, R^{3/2}\; \rm s\end{aligned}.

<h3>c)</h3>

Convert 24.6\; \rm \text{hours} to seconds:

24.6 \times 3600 = 88560\; \rm s

Solve the equation for R:

9.62 \times 10^{-7}\, R^{3/2}= 88560.

R \approx 2.04 \times 10^7\; \rm m.

<h3>d)</h3>

If an object is at its escape speed, its kinetic energy (KE) plus its gravitational potential energy (GPE) should be equal to zero.

\displaystyle \text{GPE} = -\frac{G \cdot M \cdot m}{r} (Note the minus sign in front of the fraction. GPE should always be negative or zero.)

\displaystyle \text{KE} = \frac{1}{2} \, m \cdot v^{2}.

Solve for v. The value of m shouldn't matter, for it would be eliminated from both sides of the equation.

\displaystyle -\frac{G \cdot M \cdot m}{r} + \frac{1}{2} \, m \cdot v^{2}= 0.

\displaystyle v = \sqrt{\frac{2\, G \cdot M}{R}} \approx 5.01\times 10^{3}\; \rm m\cdot s^{-1}.

5 0
3 years ago
The Earth is constantly spinning on its axis, like you might spin a basketball on your finger. It is this spinning of the Earth
mash [69]

<u>Answer:</u>

The spinning of the earth around its own axis causes day and night.

<u>Explanation:</u>

Earth has two types of motions. It spins around its own axis causing day and night every 12 hours and completes a rotation in 23.93 hours that make a full day. The part of the earth that faces sunlight during spinning experiences day and the other part has night.  It also rotates around the sun and completes one rotation in 365 days that makes a year.

5 0
3 years ago
Other questions:
  • 11. Which of the following phenomena is taking place when sound waves are reflected from a surface along parallel lines? A. Refr
    15·1 answer
  • What is the theory of punctuated equilibrium answers?
    15·2 answers
  • What is sap?
    15·2 answers
  • The speed of an ostrich is measured to be 63 km/h. What is this speed in meters per second?
    14·1 answer
  • Drop interesting and usefuk facts down here plesse and i'll give the most interesting one brainliest
    7·1 answer
  • A toy of mass 0.155 kg is undergoing simple harmonic motion (SHM) on the end of a horizontal spring with force constant 305 N/m
    13·1 answer
  • What is the current in a circuit with a 4.5 V battery and a 9 Ω resistor?
    13·2 answers
  • Two blocks with a mass of 2 kg collide in an elastic collision. The initial velocity of Block 1 is 10 m/s. Block 2 is traveling
    10·1 answer
  • wishing to collect weather data on a remote island, you come up with an idea for sending a weather balloon to the location. You
    11·1 answer
  • hen approaching a curve, it is best to: A. Search for possible collision traps and escape paths B. Stay close to the centerline
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!