D: Sóng có thể truyền qua khoảng không của không gian,
với tốc độ ánh sáng.
Explanation:
The given data is as follows.
Length (l) = 2.4 m
Frequency (f) = 567 Hz
Formula to calculate the speed of a transverse wave is as follows.
f = 
Putting the gicven values into the above formula as follows.
f = 
567 Hz = 
v = 544.32 m/s
Thus, we can conclude that the speed (in m/s) of a transverse wave on this string is 544.32 m/s.
<span>Extreme tides happen twice a month. They are caused by the earth, Sun, and Moon all being in a straight alignment. Although they are not extremely rare, extreme tides are not normal occurrences. The answer is D.</span>
To solve this problem, it is necessary to apply the concepts related to the work done by a body when a certain distance is displaced and the conservation of energy when it is consumed in kinetic and potential energy mode in the final and initial state. The energy conservation equation is given by:

Where,
KE = Kinetic Energy (Initial and Final)
PE = Potential Energy (Initial and Final)
And the other hand we have the Work energy theorem given by

Where
W= Work
F = Force
D = displacement,
PART A) Using the conservation of momentum we can find the speed, so


The height at the end is 0m. Then replacing our values

Deleting the mass in both sides,

Re-arrange for find 




PART B) Applying the previous Energy Theorem,



Solving for d
