The approximate speed of the sound wave traveling through the solid material is 1012m/s.
<h3>
Wavelength, Frequency and Speed</h3>
Wavelength is simply the distance over which the shapes of waves are repeated. It is the spatial period of a periodic wave.
From the wavelength, frequency and speed relation,
λ = v ÷ f
Where λ is wavelength, v is velocity/speed and f is frequency.
Given the data in the question;
- Frequency of sound wave f = 440Hz = 440s⁻¹
- Wavelength of the wave λ = 2.3m
To determine the approximate speed of the wave, we substitute our given values into the expression above.
λ = v ÷ f
2.3m = v ÷ 440s⁻¹
v = 2.3m × 440s⁻¹
v = 1012ms⁻¹
v = 1012m/s
Therefore, the approximate speed of the sound wave traveling through the solid material is 1012m/s.
Learn more about Speed, Frequency and Wavelength here: brainly.com/question/27120701
Answer:
Different elements all have different amounts of electrons in there outter shell.
Explanation
If you look at a periodic table, the elements are all listed in "Groups" up at the top you'll see the numbers, or columns. Each column's number represent how many electrons there are in each particular element.
hope this makes sense....
A carpenter hammering a nail
Explanation:
This is the only choice that gives you an object exerting a force ( the carpenter/hammer ) and one that has a force exerted on it ( the bail )
All of the rest would be related to acceleration and speed