Answer:
33.33j+6.67i km/hr
Explanation:
From the law of conservation of momentum,
Applying,
mu+m'u' = V(m+m')............... Equation 1
Where m = mass of the truck, m' = mass of the car, u = initial velocity of the truck, u' = initial velocity of the car, V = Final velocity.
Note: let j represent the north, and i represent the east
From the question,
Given: m = 1500 kg, u = 60j, m' = 1200 kg, u' = 15i
Substitute these values into equation 1
1500*60j+1200*15i = V(1500+1200)
90000j+18000i = 2700V
V = (90000j+18000i)/2700
V = 33.33j+6.67i km/hr
Option (a) is correct.
Falling objects accelerate as they approach the ground.This is because of the force of gravity acting on the falling objects. so the velocity of these objects increases continuously as they approach the ground. the acceleration acting on the falling objects is a constant ( close to the surface of earth) and is called as acceleration due to gravity denoted by g. value of g=9.8 m/s².
Answer:
The answer is
<h2>2560 J</h2>
Explanation:
The kinetic energy of an object given it's mass and velocity can be found by using the formula
where
m is the mass
v is the velocity
From the question
m = 80 kg
v = 8 m/s
The kinetic energy is
We have the final answer as
<h3>2560 J</h3>
Hope this helps you
Answer:
diameter = 9.951 × m
Explanation:
given data
NA = 0.1
refractive index = 1.465
wavelength = 1.3 μm
to find out
What is the largest core diameter for which the fiber remains single-mode
solution
we know that for single mode v number is
V ≤ 2.405
and v =
here r is radius
so we can say
= 2.405
put here value
= 2.405
solve it we get r
r = 4.975979 × m
so diameter is = 2 × 4.975979 × m
diameter = 9.951 × m