An electron should emit energy to return to its original energy level from a higher energy level.
<h3>What is an energy level?</h3>
Energy levels (also called electron shells) are fixed distances from the nucleus of an atom where electrons may be found.
The electron absorbs the energy and jumps to a higher energy level. In the reverse process, emission, the electron returns to the ground state by releasing the extra energy that is absorbed.
Hence, an electron should emit energy to return to its original energy level from a higher energy level.
Learn more about the energy level here:
brainly.com/question/17396431
#SPJ1
Answer:
V₂ = 16.5 L
Explanation:
To solve this problem we use <em>Avogadro's law, </em>which applies when temperature and pressure remain constant:
V₁/n₁ = V₂/n₂
In this case, V₁ is 22.0 L, n₁ is [mol CO + mol NO], V₂ is our unknown, and n₂ is [mol CO₂ + mol N₂].
- n₁ = mol CO + mol NO = 0.1900 + 0.1900 = 0.3800 mol
<em>We use the reaction to calculate n₂</em>:
2CO(g) + 2NO(g) → 2CO₂(g) + N₂(g)
0.1900 mol CO *
0.1900 mol CO₂
0.1900 mol NO *
0.095 mol N₂
- n₂ = mol CO₂ + mol N₂ = 0.1900 + 0.095 = 0.2850 mol
Calculating V₂:
22.0 L / 0.3800 mol = V₂ / 0.2850 mol
V₂ = 16.5 L
Answer:
A. 1613 °C
Explanation:
The asthenosphere is located just below the Earth’s crust.
It must be molten or semi-molten, so that convection currents can move the tectonic plates above it.
Rocks start to melt at about 1300 °C, so a temperature of 1613 °C sounds about right.
I think it’s CTell me if I’m wrong
Tap water contains many dissolved ions that are required to carry an electric current, whilst distilled water contains no or relatively low amounts of dissolved ions. the absence of ions in the distilled water accounts for the low to zero conductivity of the water
hope that helps!