Answer:
1.D
2.C
3.D
4.D
5.C
6 B
those are the answers, we must take care of our environment
Answer:
0.44 moles
Explanation:
Given that :
A mixture of water and graphite is heated to 600 K in a 1 L container. When the system comes to equilibrium it contains 0.17 mol of H2, 0.17 mol of CO, 0.74 mol of H2O, and some graphite.
The equilibrium constant ![K_c= \dfrac{[CO][H_2]}{[H_2O]}](https://tex.z-dn.net/?f=K_c%3D%20%20%5Cdfrac%7B%5BCO%5D%5BH_2%5D%7D%7B%5BH_2O%5D%7D)
The equilibrium constant 
The equilibrium constant 
Some O2 is added to the system and a spark is applied so that the H2 reacts completely with the O2.
The equation for the reaction is :

Total mole of water now = 0.74+0.17
Total mole of water now = 0.91 moles
Again:
![K_c= \dfrac{[CO][H_2]}{[H_2O]}](https://tex.z-dn.net/?f=K_c%3D%20%20%5Cdfrac%7B%5BCO%5D%5BH_2%5D%7D%7B%5BH_2O%5D%7D)
![0.03905 = \dfrac{[0.17+x][x]}{[0.91 -x]}](https://tex.z-dn.net/?f=0.03905%20%3D%20%20%5Cdfrac%7B%5B0.17%2Bx%5D%5Bx%5D%7D%7B%5B0.91%20-x%5D%7D)
0.03905(0.91 -x) = (0.17 +x)(x)
0.0355355 - 0.03905x = 0.17x + x²
0.0355355 +0.13095
x -x²
x² - 0.13095
x - 0.0355355 = 0
By using quadratic formula
x = 0.265 or x = -0.134
Going by the value with the positive integer; x = 0.265 moles
Total moles of CO in the flask when the system returns to equilibrium is :
= 0.17 + x
= 0.17 + 0.265
= 0.435 moles
=0.44 moles (to two significant figures)
Answer:
it has a fixed volume it can also be compressed
Explanation:
a gases molecules don't move slow because they are not solid and are not compacted.
a gas does not have a fixed shape because there is nothing to hold its shape
Answer:
negative
Explanation:
When something slows down, its acceleration is the opposite of the velocity.
Answer:
3.7mL is the volume of the object
Explanation:
To convert the mass of any object to volume we must use density that is defined as the ratio between mass of the object and the space that is occupying. For an object that weighs 7.9g and the density is 2.28g/mL, the volume is:
7.9g * (1mL / 2.28mL) =
<h3>3.7mL is the volume of the object</h3>