Answer:
Part(a): The frequency is
.
Part(b): The speed of the wave is
.
Explanation:
Given:
The distance between the crests of the wave,
.
The time required for the wave to laps against the pier, 
The distance between any two crests of a wave is known as the wavelength of the wave. So the wavelength of the wave is
.
Also, the time required for the wave for each laps is the time period of oscillation and it is given by
.
Part(a):
The relation between the frequency and time period is given by

Substituting the value of
in equation (1), we have

Part(b):
The relation between the velocity of a wave to its frequency is given by

Substituting the value of
and
in equation (2), we have

The kinematic equations are used to <span>quantify motion in the case of uniform acceleration.
The other name is :
SUVAT equations, where the letters signify:
displacement (s),
initial velocity (u),
final velocity (v),
acceleration (a), and
time (t).
There are three equations are attached in the picture: </span>
Answer:
a = 1.16 m/s²
Explanation:
In order to find the acceleration of the ball we will use 3rd equation of motion.
2as = Vf² - Vi²
where,
a = acceleration = ?
s = displacement = 21.9 m
Vf = Final Velocity = 7.14 m/s
Vi = Initial Velocity = 0 m/s (Since, ball starts from rest)
Therefore, using the values, we get:
2a(21.9 m) = (7.14 m/s)² - (0 m/s)²
a = (50.97 m²/s²)/(43.8 m)
<u>a = 1.16 m/s²</u>
From the given problem, a limit on the depression of a building is placed at 20 centimeters. To solve how many floors can be safely added, a quantity of how many cm will a building sink for each floor that is added is needed. Unfortunately, it is not found anywhere in the problem. However, we can provide a formula to solve for the depression. This is as follows:
Building depression < 20 cm
Building depression = (cm depression per floor) * (no. of floors)